養蜂技術指導手引書 V

令和5年度持続的生産強化対策事業 養蜂等振興強化推進事業(全国公募事業)

養蜂における衛生管理 ダニ防除技術

「再改訂版]

一般社団法人 日本養蜂協会

養蜂技術指導手引書 🗸

養蜂における衛生管理

ダニ防除技術

[再改訂版]

木村 松 村 茂 茂 村 田 村 八 田 村 田 研 田 研 田 研 田 研 理

目次

はじめに		5
ヘギイタ	ダニの生物学	- 6
養蜂にお	けるミツバチヘギイタダニ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
検査法	······································	23
駆除法	······································	26
ダニ駆除	の具体例――福岡県の取り組み・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
Appendi		
Appendix 1	主なウイルス病	33
Appendix 2	ダニ駆除剤の利用方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
Appendix 3	ダニ抵抗性ミツバチ系統の育種	39
Appendix 4	ダニ被害実態調査アンケート結果報告書 · · · · · · · · · · · · · · · · · · ·	40
Appendix 5	ミツバチヘギイタダニ浸潤調査報告書 · · · · · · · · · · · · · · · · · · ·	45

はじめに

* 家畜伝染病予防法の改正(令和2年) に伴い、バロア病はバロア症に名称が変 更された。

バロア症*(Varroosis) は外部寄生性のVarroa属のダニ、主としてミツバチヘギ イタダニ(Varroa destructor)によって引き起こされる症候群である。このダニ の食害による弱体化とチヂレバネウイルスなどのウイルス感染が病気を引 き起こすことが主原因である。このダニは世界的に感染が蔓延し、養蜂最大 の敵と言っても過言ではない。また、バロア症は、他の問題、例えば農薬被害と 相乗的に働いて蜂群を弱らせる。バロア症は蜂群崩壊や、ミツバチ減少現象 の一因とされている。

日本でも、家畜伝染病予防法においてバロア症は届出伝染病に指定され、最も 重要な疾病の一つである。その発生状況は毎年集計され一定数の報告がなさ れている。他の病気と比較しても発生の多い病気である。実際は、病気の発生 が届けられていないケースもかなりあると推測され、また発症していなくて も多くの群にヘギイタダニは寄生していると考えられる。

表1 日本での発生状況

	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
腐蛆病	127	230	168	130	89	74	135	104	127	110
バロア	973	1146	2427	826	1036	964	877	754	611	377
チョーク	876	869	828	1186	933	803	498	343	601	66
アカリン	18	9	24	42	38	62	70	119	91	142
ノゼマ	0	0	0	0	8	2	4	4	0	1

各疾病の発生群数(2012年以降、群)(農林水産省:監視伝染病発生状況)

図1 ミツバチヘギイタダニ 上段:若虫(♀) 下段左:成虫(♀)、下段右:♂

オス(右)

図2 ミツバチヘギイタダニのメス(左)と 図3 巣房内のダニ(蛹を取り除いた 状態)

ヘギイタダニの生物学

養蜂業に甚大な経済的被害を与えているバロア症(Varroosis)は、体液*を吸汁する外部寄生性のダニ、ミツバチヘギイタダニ(Varroa destructor)による。雌雄で外見が異なり、雌は長さ1mm幅2mmほどの扁平な楕円形で赤色~赤褐色であるのに対し、雄は白色~黄白色で長さ幅ともに1mmに満たない円形に近い形をしている。体液を吸って直接的に蜂を弱らせるだけでなく、この過程でチヂレバネウイルスなどのウイルスを媒介する。ダニそのものについて知ることは、安全で効果的かつ簡便なバロア症対策を構築し、ダニに負けないミツバチを育種する基盤となる。

* p.12のトピック参照

分類

ミツバチへギイタダニは、トゲダニ目(Mesostigmata)、トゲダニ科(Laelapidae)、ミツバチへギイタダニ属(Varroa)に分類される。Varroa属をトゲダニ科に分類することが提案されたのは1993年なので、それまで分類されていたへギイタダニ科(Varroidae)とする分類とが、現在、混在している。

2000年に V. destructor が Anderson、 Trueman によって新種として発見され、セイヨウミツバチの被害がこのダニによってもたらされていることが明らかになるまで、ミツバチヘギイタダニの学名は V. jacobsoni とされていた。 V. jacobsoni は、オランダの動物学者 A. C. Oudemans が 1904年にインドネシアのジャワ島でトウヨウミツバチ(Apis cerana) から発見し、名づけたダニで

ヘギイタって何?

ミツバチへギイタダニという名前を耳にして、ミツバチとダニはわかるけど、 ヘギイタって何? って思った人はいませんか?

「へぎ板」は、木材を手を使って割るようにして作った厚さ2~10mmの板のことです。瓦屋根の下葺きに使ったり、そのままを使って屋根にしたものが柿(こけら)葺きの屋根です。「へぎ」の語は「剝(へ)ぐ」という手を使って割る所作を表す動詞が名詞化したもので、ヘギイタダニは「へぎ板」のように扁平なダニということです。

ある。このダニがセイヨウミツバチに寄主範囲を広げ、1950年代以降、深刻な被害を及ぼしてきたと考えられていたが、1990年代にAndersonらによって V. jacobsoniにはトウヨウミツバチでのみ繁殖し、セイヨウミツバチでは繁殖しないダニがいることが示された。さらに、ミトコンドリア DNA の解析結果から、トウヨウミツバチで繁殖するダニ(V. jacobsoni) とセイヨウミツバチに被害を与えているダニとは、遺伝子型が異なることがわかり、2000年の新種(V. destructor) 発見につながった。

これを受けて、現在知られている Varroa 属のダニ4種について、属名・総称・学名・和名を次のように整理する提案が2017年になされた。学名(斜体) のあとに命名者名、記載年、和名(坂本・岡部2017による) を記す(この手引き書では、以後この和名を用いる)。

Varroa属 ミツバチヘギイタダニ属(属名)

varroa mites ミツバチヘギイタダニ類(総称)

Varroa destructor Anderson and Trueman 2000 ミツバチヘギイタダニ Varroa jacobsoni Oudemans 1904 ジャワミツバチヘギイタダニ

Varroa rindereri Guzman and Delfinado-Baker 1996

リンデラーヘギイタダニ

Varroa underwoodi Delfinado-Baker and Aggarwal 1987 アンダーウッドヘギイタダニ

これら4種のダニが発見された、あるいは寄生・繁殖することが知られている 主なミツバチ種は下記の通りである。

ミツバチへギイタダニ:トウョウミツバチ、セイョウミツバチ ジャワミツバチへギイタダニ:トウョウミツバチ リンデラーへギイタダニ:ボルネオ島のサバミツバチ (Apis koschevnikovi) から発見

アンダーウッドヘギイタダニ:ネパールのトウヨウミツバチから発見

ミトコンドリアDNAの解析から、ミツバチへギイタダニの遺伝子の型は少なくとも6タイプ知られている。養蜂上もっとも重要なのは韓国型で、ヨーロッパ、中東、アフリカ、アジア、ロシア、南北アメリカのセイヨウミツバチから見いだされ、日本・タイ型よりも深刻な被害をもたらすとされている。日本・タイ型は、日本、タイ、南北アメリカのセイヨウミツバチから確認された。これらの型のミツバチへギイタダニは、もともとセイヨウミツバチがいなかった韓国、日本、タイなどに生息するトウヨウミツバチからも見つかるため、これらの国がセイヨウミツバチを導入したあとに、もともと寄生していたトウヨウミツバチからダニがセイヨウミツバチに移り、それが世界に広まったとされる。日本のミツバチへギイタダニの多くは韓国型である可能性が高い(Ogihara et al., 2020)*。このことから、日本のセイヨウミツバチに寄生するミツバチへギイタダニの多くはニホンミツバチから移って来たというより、他の国のダニが日本で分布を広げたと考えられる。

* Ogihara M., Yoshiyama M., Morimoto N., Kimura K. (2020) Dominant honeybee colony infestation by *Varroa destructor* (Acari: Varroidae) K haplotype in Japan. *Appl. Ento. Zool.* 55:189–197

生活史

ミツバチへギイタダニは、成虫(働き蜂・雄蜂)に寄生した状態か、幼虫または蛹に寄生した状態で見つかる。これら二つの状態のダニを、phoretic mites (便乗期のダニ)、reproductive mites (繁殖期のダニ)と呼ぶ。便乗期のダニは、ミツバチの成虫から栄養を摂取すると同時に、移動し分布を広げるためのいわば乗り物として蜂を利用している。すなわち、ダニに寄生された働き蜂が外勤や盗蜂に出るか分蜂すれば、ダニが巣の外に出て分布を拡大することにつながる。従って、分蜂を制御することはもちろん、狭い蜂場に近接して巣箱を配置することや、蛮不足による盗蜂に留意する必要がある。便乗期のダニは、蜂が巣箱内で育児圏に来れば、蜂から降りて巣房に入り繁殖期のダニとなる。

交尾済みの雌ダニは、成長して蓋をされる直前の終齢幼虫がいる巣房に入る。このとき、雌ダニが繁殖に適した幼虫がいる巣房をどのようにして選ぶのか、幼虫が発する化学物質を手がかりにしているとの想定で研究が進められているが決定打は出ていない。ダニはおよそ3日間、巣房の奥で幼虫の餌と虫体の間に隠れるようにして過ごす。その間に巣房に蓋がされ、幼虫は餌を食いつくし前蛹となる。ダニは、有蓋巣房の中でミツバチの幼虫の血液と脂肪体を食害し、産卵、繁殖する。まず、最初の一卵は、孵化成長して雄になり、その後、30時間に一卵のペースで産まれた卵はすべて雌に成長する。ダニの生長期間は、雄ダニで平均5.8日、雌ダニは6.6日で、第一若虫(protonymph)、第二若虫(deutonymph)を経て成ダニへと成長する。母ダニは蜂の蛹に穴を開け、若虫の食事を助ける「子育て行動(parental care)」を行う。有蓋巣房の中で成熟した雄は、あとから成長した雌ダニ(娘ダニ)と交尾する。2013年に、未交尾雌が雄を誘引し、交尾行動を解発する性フェロモン(3種類の脂肪酸とそれらのエチルエステル)が明らかになった。母ダニと交尾後の娘ダニは蜂が羽化・出房する

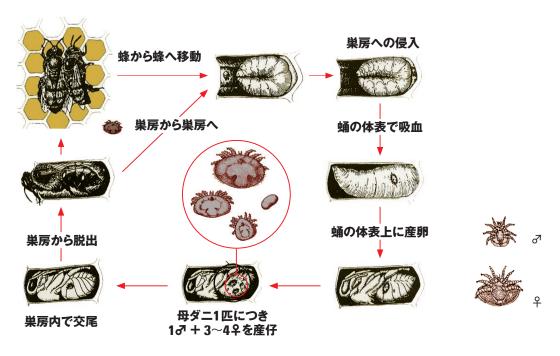


図4 ミツバチヘギイタダニの生活環

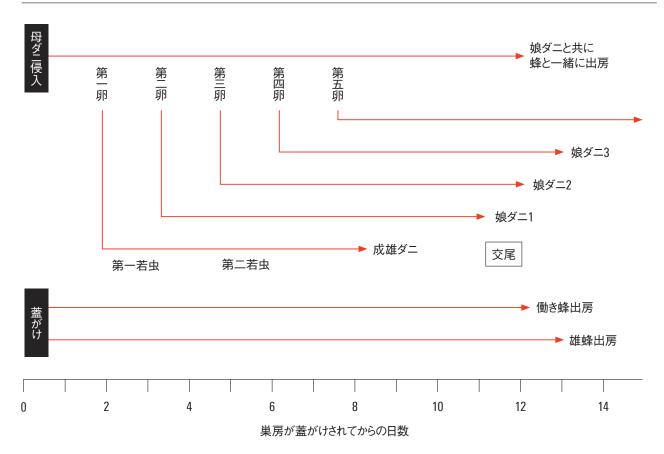
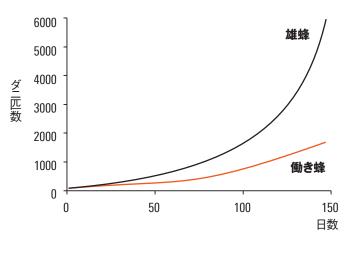


図5 ミツバチヘギイタダニの繁殖サイクル


時に外に出て行く。それまでに成ダニになれなかった娘ダニと雄は死んでしまう。働き蜂と雄蜂では、蓋がけされてから羽化するまでの期間が雄蜂のほうが1~2日長いので、母ダニが産める卵の数はどちらに寄生するかによって異なる。働き蜂の蜂児では最高5卵、雄蜂では6卵が産下される。従って、出房直前の働き蜂の巣房を開けると、母ダニ、雄ダニ、そして3頭の娘ダニが中にいることになる。

ダニがどのくらい増殖するかについては、3か月で12倍という記述がある。1 頭の母ダニから何頭の繁殖可能なダニが成長するか、および、そのダニが生涯 の間に繁殖サイクルを何回繰り返せるかが基本的な要素となる。産出した娘

表2 ヘギイタダニの増殖の特徴

- ・ミツバチの蛹に寄生して体液を餌に増殖
- ・同系交配で次世代をつなぐ
- ・成蜂の体表上でも数か月は生存可能
- ・母ダニは3か月の寿命(=3回+の産仔機会)
- ・雄蜂蛹で4娘、働き蜂蛹で3娘産出*
- ・理論上、生涯で、1母ダニが12匹+の娘ダニを生産可能

*すべての娘ダニが出房して繁殖可能なわけではない(本文参照)。

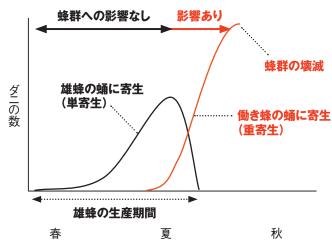


図6 雄蜂の蛹で急増殖するダニ

図7 バロア症は秋に重症化する

ダニはすべて繁殖可能なわけではなく、野外の蜂群を用いた実験観察で、働き蜂蜂児からは1.3~1.45頭、雄蜂児では2.2~2.6頭の繁殖可能なダニが生まれるとの報告がある。一方、繁殖サイクルは、実験条件下では最高7回のサイクルを繰り返したとされ、野外の蜂群ではそれは2回から3回と推定されている。実際の増殖率は、これらの基本的な要素と蜂群の状態・性質、さらに外部環境(天候、花粉・花蜜の流入量)があいまって決まる。晩夏から晩秋にかけてのダニの増殖は爆発的であり、多くの蜂群で越冬に失敗する原因となる。

冬季には女王蜂の産卵が止まり蜂児はいなくなるので、ダニは繁殖せず越冬 する働き蜂に付いて冬を越す便乗期のダニとなる。成虫に便乗した状態で何 か月も生存することが可能である。そのため蜂児がいない期間があっても、 ダニを完全に駆除することは困難である。ミツバチへギイタダニとセイヨウ

表3 温暖化により冬季もヘギイタダニが繁殖

寒冷地(今までの日本のほとんどの地域)

	ヘギイタダニ	ミツバチ
冬	働き蜂の体表にとどまる 無蜂児期で増殖は不可能 ► 生存数が減少 ヘギイタダニは加齢 ► 繁殖力低下	無蜂児状態で越冬中 巣内温度も低下
春	少数のヘギイタダニが雄蜂の蛹に寄生 ► <u>急激に増える</u>	ヘギイタダニの寄生は雄蜂に限定 ▶ 蜂群には無影響
夏	増えたダニが働き蜂の蛹に寄生するようになる	繁殖期が終わり雄蜂の生産が中止 働き蜂の生産に影響あり

温暖地

	ヘギイタダニ	ミツバチ
冬	ヘギイタダニは働き蜂の蛹で繁殖を継続 常に若い母ダニが存在 ▶ 高い繁殖力の維持	有蜂児状態で越冬中 ヘギイタダニが多い場合には働き蜂生産に影響あり
春	多数のダニが雄蜂の蛹に寄生 ► さらに急激に増える	ヘギイタダニの寄生は雄蜂に限定 ▶ 蜂群には無影響
夏	増えたヘギイタダニが働き蜂の蛹に寄生 (重寄生)	繁殖期の終点で、雄蜂の生産を中止 働き蜂の生産に影響あり ▶ 蜂群の崩壊

ミツバチの関係は新しく、バランスが取れた状態(共存関係)にないので、ダニが増えすぎて越冬が失敗すればダニも絶える。一方、越冬前に弱った群を合同する、蜂群を暖地に移動させるなどの養蜂上の作業は、ダニにとっては生存・繁殖に好都合な条件を与えることとなる。

さらに最近の温暖化により越冬期にも、蜂群に有蓋蜂児が存在するようになってきている。そのため、ヘギイタダニの繁殖が継続し、常に若い母ダニが存在し、高い繁殖力を維持することになっている。このことで春の増殖期に多くのダニ繁殖個体が存在することになり、夏以降に重寄生となる傾向が一層高まっている。

トウヨウミツバチには、ミツバチへギイタダニとジャワミツバチへギイタダニの2種のダニが寄生する。これらは雄蜂児でのみ繁殖し、蜂群に壊滅的な害を与えない。その理由は未だ明確になっていないが、働き蜂蜂児のサイズがセイヨウミツバチより小さく生長期間も短いためにダニが十分に増殖できない、働き蜂のグルーミングによりダニを取って捨てる行動が顕著である、複数のダニに寄生された雄蜂児は弱ってしまい羽化するときに巣房の蓋を開けられずダニを道連れにして死んでしまう、雄蜂児を育成する時期・期間がセイヨウミツバチよりも限定されている、などのダニにとっては不利な性質がトウヨウミツバチには揃っている。これらの性質がどのようなメカニズムで成立しているかを解明し、ダニに負けないミツバチの育種に役立てる必要がある。

巣箱まるごと冷蔵してダニ退治

本稿でも解説しているように、ダニの繁殖は巣房に限られるので、巣を蜂 児がいない状態にすることでダニを駆除する方法は以前から知られていま す。しかし、冬期以外で蜂児がいない状態を長く保つことは難しく(生物的 にも養蜂管理上も)また、冬期も働き蜂についているダニを駆除することは できません。最近ワシントン州立大学の研究者が夏季に蜂群を冷蔵するこ とで、蜂児をいない状態にしてダニを駆除する方法を考案したことがアメリ カの養蜂誌に掲載されました。これは、8月に、巣箱ごと冷蔵して、女王蜂 の産卵を中断させ一時的に有蓋蜂児が無い状態にして、冷蔵後殺ダニ 剤で働き蜂についているダニを殺すことでダニをコントロールする方法で す。冬期に巣内に有蓋蜂児が完全に無い状態にすることは難しく、また無 い状態になったとしても早春に殺ダニ剤を使用すると春の採蜜期にか かってしまう懸念があります。これに対し、冷蔵することで完全に有蓋蜂児 がいなくなり、8月以降に採蜜しないということであれば有効な手段かもしれ ません。ただし、巣間でダニは移動するので、蜂場すべての蜂群を冷蔵す ることができる、大きな冷蔵設備が必要であるし、また冷蔵が秋に蜂群にど のような影響があるかは不明です。まだまだ発展途上の技術ですが注目に 値すると思います。

ダニはミツバチの血液よりも脂肪体を好む

これまでヘギイタダニはミツバチの血液を吸汁して栄養を得ていると考えられてきました。しかし、2019年にアメリカ・メリーランド大学のRamseyらによって、ヘギイタダニは血液よりも「脂肪体」と呼ばれる組織を主要な栄養源としていることが分かりました。

「脂肪体」とは、人間でいうところの肝臓の機能を持つ組織で、脂肪やタンパク質などの栄養素を貯蔵したり、免疫や解毒に重要な役割を果たす組織です。人間の肝臓のように体の中に1つの塊で存在するのではなく、不定形の組織として全身に存在します。雄の蜂児を切った際に白っぽく見える組織、それらの多くが脂肪体です。

電子顕微鏡での詳細な観察や組織染色をした働き蜂を用いたダニの吸汁試験によって、ダニがミツバチの脂肪体を食べることが明らかになりました。脂肪体はクチクラと呼ばれる昆虫の表皮の内側にあります。ヘギイタダニはミツバチの表皮に口器で穴をあけ、そこから脂肪体(おそらく一緒に血液も)を食べているようです。ヘギイタダニの口の形は「吸汁」タイプの口ではないため、口腔外消化(体外で消化してから飲み込む方法)によって栄養が豊富な脂肪体を利用していると考えられています。

チヂレバネ病などのウイルスの媒介もその時に起こると考えられます。世界中の研究者が研究を進めていますが、ヘギイタダニの生態や生理はいまだに不明な部分が多く残されています。

感染・拡大の歴史

セイヨウミツバチはアフリカ・ヨーロッパが原産なので、ミツバチへギイタダニがセイヨウミツバチに寄生するようになったのは、養蜂を目的として人為的にセイヨウミツバチをアジア地域に導入してからのことである。日本にはアメリカ経由で1877(明治10)年に導入され、韓国では1890年代とされる。セイヨウミツバチに被害を及ぼすミツバチへギイタダニはトウヨウミツバチでは、日本からスリランカまで自然分布している。

トウヨウミツバチに寄生していたダニがどのようにセイヨウミツバチに移ったか、詳しいことはわからないが、1950年代以降、セイヨウミツバチにその存在が顕在化し、ほぼ世界中にダニが広まった。トウヨウミツバチからセイヨウミツバチへの寄主転換はすぐに起こった訳ではなく、徐々に起こったと考えられる。各国での発見記録、蜂群の輸出入の記録、ミトコンドリアDNAの解析結果から得られた韓国型および日本・タイ型のダニの分布を総合し、ダニの感染・拡大経路として推測された二つのルートがあると考えられている。一つは、極東アジアから極東ロシアを経てヨーロッパさらに北アメリカへのルート。もう一つは、日本からパラグアイを経由して、南北アメリカに広まったルートである。トウヨウミツバチによるミツバチへギイタダニ

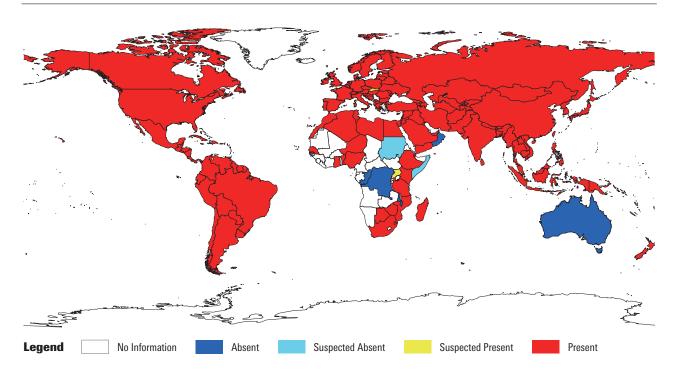


図8 ミツバチヘギイタダニの世界的分布 (Dr. Chase B. Kimmel)(フロリダ自然史博物館作成)

の持ち込みなどに曝されながらも、バロア症の清浄国であったオーストラリアでは、2022年6月にニューサウスウェールズ州のニューカッスルで、セイヨウミツバチからミツバチへギイタダニが発見され、ただちに根絶事業が開始された。2023年9月までに経費は1億3200万豪ドルに達し、感染確認地域での予防的殺処分の対象となった蜂群も3万群を超える、史上最大規模の根絶事業となった。根絶事業下では、養蜂家に16週ごとのダニ検査の実施および報告が義務づけられ、基本的に蜂群の移動は禁止となり、果樹の花粉交配などへの大きな影響も懸念されてきた。

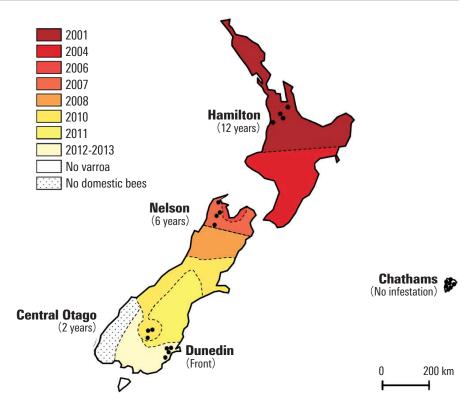
しかし2023年9月19日に、州政府は根絶事業の中止を発表、今後は他のダニ 汚染国と同じように、ダニ駆除剤を用いるダニ管理体制に移行することが 決定した。

各国でダニが確認された時期を年代順に並べ、2000年に発表された論文から判明したその国で採取されたダニの遺伝子型を付け加えると**表4**のようになる。

表4からわかるように日本では1960年代にはセイヨウミツバチに寄生していたと考えられ、それがジャワミツバチへギイタダニかミツバチへギイタダニかは、はっきりしたことはわからない。現在日本の蜂群の多くは、ミツバチへギイタダニに寄生されていると考えられる。

南北アメリカには、ヨーロッパ経由の韓国型とパラグアイ経由(起源は日本とされている)の日本・タイ型の両方のダニがいる。韓国型のダニの方がより大きな被害を与えるとされていて、今後、これらの地域でどちらの型のダニが優勢に

表4 ダニが確認された年とその遺伝子型


年	国 (地域)	遺伝子型
1952	極東ロシア	韓国型
1955	パキスタン	
1958	日本	日本・タイ型
1959	中国	韓国型
1967	ブルガリア	
1971	パラグアイ	
1972	ブラジル	日本・タイ型および韓国型
1977	ドイツ	韓国型
1980	ポーランド	
1982	フランス	韓国型
1987	アメリカ合衆国	日本・タイ型および韓国型
1989	カナダ	日本・タイ型および韓国型
1992	イギリス	韓国型
1998	アイルランド	
2000	ニュージーランド北島	
2006	ニュージーランド南島	
2007	ハワイ(オアフ島)	
2008	ハワイ(ハワイ島)	

初確認されたダニとその遺伝子型を調べたダニは同じでない。また現在の遺伝子型と一致しないことも考えられる

なるかを注視している研究者がいる。一方、ダニと共存している期間が長いほど、耐性を示すセイヨウミツバチが出現する可能性は高いとして極東ロシアの蜂に注目している研究者もいる。実際、米国農務省は1997年に沿海州から、抵抗性のミツバチ系統を導入し、その普及に努めている。自然集団の中から進化的に抵抗性を進化させた系統を見つける試みが行われている。

へギイタダニの感染拡大は非常に速いことが知られている。ニュージーランドにおける感染の拡大を図示したものである[89]。2000年に初めて発見されたヘギイタダニは1990年代後半に人為的に北島に持ち込まれたと考えられる。その後急速に全土で拡大し、12年でほぼ全土に分布を広げている。一度汚染された国では、駆除は難しい。

ジャワミツバチへギイタダニは、基本的にある一つのタイプのダニだけがセイヨウミツバチに寄生し被害を及ぼす。パプアニューギニアのセイヨウミツバチで広く分布しているが、近隣の国々では分布は広がっていないとされている。

* Mondet F., de Miranda J. R., Kretzschmar A., Le Conte Y., Mercer A. R. (2014) On the Front Line: Quantitative Virus Dynamics in Honeybee (Apis mellifera L.) Colonies along a New Expansion Front of the Parasite Varroa destructor. *PLoS Pathog.* 10(8): e1004323.

図9 非常に速い感染の例

(Mondet et al., 2014, PLoS Pathogens*)

1992年には、トレス海峡諸島(パプアニューギニアとの約150kmの海峡に274の小島が点在する)の島にトウヨウミツバチが飛来し、その中にジャワミツバチへギイタダニが見つかった。2007年には、北部の観光拠点都市ケアンズにトウヨウミツバチが定着したが、ダニは見つかっていない。それ以降、分蜂群にダニが寄生していないかどうかを調べるため、捕らえた分蜂群をエタノールに浸して振動をかけ、落下したダニを調べる方法を開発してダニの侵入に目を光らせている。なお2016年6月と2019年5月に、ケアンズ南方のタウンズビルで、定着したトウヨウミツバチからダニが見つかったが、有害性が低いと見られるジャワミツバチへギイタダニ Varroa jacobsoniであった(日本におけるダニ浸潤調査の結果はAppendix 5 p.45参照)。

世界中に蔓延するミツバチへギイタダニの遺伝子型!

ミツバチへギイタダニは大きく2つの遺伝子型に分かれ、ダニが採取された国名から、日本・タイ型(J型)と韓国型(K型)と呼ばれています。これらの遺伝子型はミトコンドリアDNA配列の違いによって分けられており、見た目では区別がつきません。ミツバチへギイタダニはもともとトウヨウミツバチに寄生し、セイヨウミツバチにも寄生できるように進化(寄主拡大)しましたが、J型とK型は別々の場所で寄主を拡大し、セイヨウミツバチ群の移動などにより世界中に広まったと考えられています。

ミツバチへギイタダニの遺伝子型の調査は1990年代後半から行われており、K型はアジア、ヨーロッパ、南北アメリカ、アフリカに分布しています。対してJ型は日本やブラジルなどの南米地域、スペインと分布地域が限られていました。J型の検出は10、20年前の報告が多く、過去にJ型が検出されたブラジルやアルゼンチンでは、現在、特定の島を除き、K型のみが検出されています。日本国内では2018年に北海道、福島、大阪で調査が行われ、調査地域のセイヨウミツバチから採取したミツバチへギイタダニは全てK型でした。また、ニホンミツバチから採取したミツバチへギイタダニも多くはK型でした。日本国内でもJ型のミツバチへギイタダニが大幅に減少し、K型が主流の遺伝子型になっていると考えられます。近年の海外調査ではK型しか報告されておらず、過去にJ型が存在した地域でもK型が主流になっていることから、世界中でK型のミツバチへギイタダニが主流になったと考えられます。K型のミツバチへギイタダニの繁殖力や保有するウイルスなどの情報を世界で共有し、効果的な防除方法を見つける必要があります。

養蜂における ミツバチヘギイタダニ

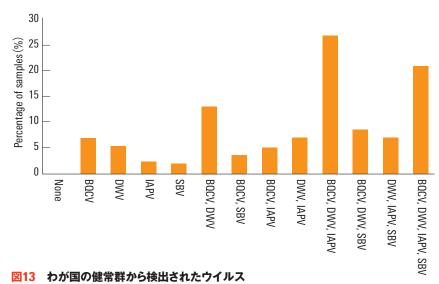
分布拡大の理由

現在のようにミツバチへギイタダニが世界的に分布を拡大した背景には、セイヨウミツバチがトウヨウミツバチの持つ防除方法(グルーミングが最も重要な方法と考えられている)を持っていなかったことがある。また、セイヨウミツバチ養蜂にも大きく影響されていると考えられる。養蜂は、ヘギイタダニが蜂群間で移動する(水平感染)機会を増加させている。まず第一に、セイヨウミツバチは、野生状態に比較して非常に高密度で飼育されるため、ミツバチへギイタダニが他の群に移る可能性が高いことがあげられる。働き蜂や雄バチは他の蜂群に入る(迷いバチ)ことが多く、それに伴ってダニも別の群に移動する。第二に、セイヨウミツバチ転飼は、分布を広げる要因にもなったと考えられる。第三に、多くの国では野生のセイヨウミツバチが感染源のプールになったことも挙げられる。

図10 養蜂現場の写真と宅配の写真

図12 働き蜂とダニ

ヘギイタダニの影響


経済的影響: ミツバチへギイタダニ寄生による経済的損失の推定値を正確に 得るのは難しい。しかし多くの群がダニの感染によって崩壊しており、多額 の経済的損失を与えていることは確かである。現在ヘギイタダニを何らかの 方法で制御することなしには、ほとんど養蜂が成り立たないといっても過言 ではない。このために殺ダニ剤などの購入と施用に多くの費用と時間をさか なくてはいけない。

人間の管理下にある蜂群は、殺ダニ剤でヘギイタダニがコントロールされているので、ダニに抵抗性のミツバチが自然選択される可能性は小さい。一方、現在野生系統はダニの影響で、多くの先進国ではほとんど生存できない状況である。しかしこのような状況でコントロールすることなく残ってきた集団は、ダニに対する抵抗性を維持している可能性がある。先に触れた極東ロシア系統もそのような中発見された。

群への影響: ヘギイタダニは寄生によって成虫を殺さないが、その寿命を短くし、行動も変えると考えられている。成虫よりも影響が大きいのは蛹・幼虫でダニの寄生により発育が阻害される。このことによって多くの蜂群が被害を受けることは事実であるが、もっと重要な問題は、ダニによるウイルスの媒介である。

ウイルス

現在では20種以上のウイルスが知られ、そのほとんどはダニによって媒介されると考えられている。ミツバチのウイルスは50年以上前から知られているが、1980年代にダニが蔓延するまでは重要視されていなかった。日本では、

Y軸は調査サンプルあたりの百分率。例えばウイルスを持っていなかったサンプルは一例も無いのに対し、BOCV、DWV、IAPV、SBVの4種のウイルスを同時に持っていたサンプルは20%を占めた (Kojima et al. 2011*より)

* Kojima Y., Toki T., Morimoto T., Yoshiyama M., Kimura K., Kadowaki T. (2011) Infestation of Japanese Native Honey Bees by Tracheal Mite and Virus from Non-native European Honey Bees in Japan. *Microbial Ecology* 62:895-905.

ウイルスによって引き起こされる病気は家畜伝染病予防法で指定された疾病ではないが、蜂群に大きな影響を及ぼしていると考えられている。2009年の調査でも、日本の全ての調査コロニーが何らかの病原性のウイルスを持っており[803]、同時に3種以上のウイルスを持っているコロニーも数多く存在していた。2013年のアメリカの蔓延状況調査でも、調査群のBQCVは80%以上、DWVは80%保持されていた。その他のウイルスも20%以下であったが保持されていた(p.32「飼育ミツバチの病原体遺伝子保有状況調査」も参照、ミツバチがかかるウイルス病についてはAppendix 1 p.33参照)。

ダニによって引き起こされる病状

ウイルスの典型的な症状以外にも、ヘギイタダニの寄生によって起こる一連の病状は、ひっくるめてバロア症(varroasis)と総称され、家畜伝染病予防法の届出伝染病に指定されている。ミツバチのコロニーを弱らせ、最終的に崩壊させる状態をさす。最近では、寄生ダニ症候群(Parasite Mite Syndrome, PMS)とよばれることも多い(varroasisとPMSとの間で厳密な使い方の区別はないようである。一般的には、PMSは、巣に観察される状態をしめし、また、より被害の進んだ状態を表す)。PMSには、特徴的な症候が見られるが、それらは、ウイルス感染後の2次感染が考えられ、引き起こす病原体はまだ特定されていない。症状は他の病気(アメリカ腐蛆病、ヨーロッパ腐蛆病、サックブルード病)に似ている。

PMSの症状

- 有蓋蜂児がスポット状になる。
- ダニが巣房の中だけでなく、有蓋の上や蓋がけしていない白くなった幼虫

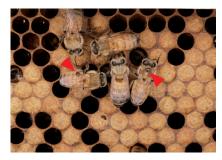


図14 重感染群では羽化直後の働き蜂上にダニが目立つ

図15 巣門前に落ちた羽化不完全の成蜂 とダニの死骸

図16 巣箱底に落ちた羽化不完全の成 蜂とダニ

図17 典型的なPMSの巣枠

図18 死んで腐った幼虫が観察される

図19 働き蜂によって蓋が開けられ頭だけ取り除かれた蛹が見られる

の上を這い回る。

- 成虫の数の大幅な低下が見られる。
- DWVの蔓延による縮れ翅を持つ個体の増加。
- 腐蛆病と異なり幼虫が色を変えて腐敗し始めるまで、臭気を発しない。また腐った幼虫は糸を引かない。
- 頭をかじられた蛹が観察される。
- アメリカ腐蛆病と同様、蓋が陥没したり穴が開いたりする。
- 幼虫は巣房の奥ではなく、正面から見て巣房の下部にみられる。

薬剤抵抗性の発達

多くの節足動物では、合成化学薬剤の利用により、薬剤抵抗性が発達する。ミ ツバチヘギイタダニでも殺ダニ剤に対する抵抗性を持つダニの発達が問題 になっている。抵抗性を持つダニの早期発見は非常に重要であるが、養蜂家 自身がそれを見つけることは難しい。殺ダニ剤の中でもピレスロイド系ダニ 剤 tau-フルバリネート(アピスタン®) への抵抗性の発見は1991年イタリアに 遡る。この抵抗性のダニがミツバチの転飼に伴って周辺諸国に広まったと考 えられる。アメリカにおける最初の発見は1997年でその後数年の間にアメ リカ全土に急速に広がったと考えられる。ダニの抵抗性の発達がこれまでに 何度起こったかは明らかでない。一般にピレスロイド系農薬に対する抵抗性 には3種のメカニズムが知られている。第一は殺ダニ剤を無毒化する酵素の発達、 第二は殺ダニ剤のターゲットサイトの変化、第三は節足動物表皮(クチクラ層)の 物理的変化である。ヘギイタダニにおいては全てのメカニズムによる tau‐フルバリ ネート抵抗性発達が知られている。特に研究が多いのは殺ダニ剤ターゲットサイト の変化である。tau - フルバリネートのターゲット分子は神経伝達に関与するナトリ ウムチャネルで、ナトリウムチャネルの特定の場所 (ターゲットサイト) に tau - フル バリネートが結合するとヘギイタダニの神経伝達に異常が生じ、死に至る。ナトリウ ムチャネル遺伝子の突然変異によりターゲットサイトの形状が変化すると、フルバ リネートの作用が弱まり、ダニは抵抗性となる。世界的に知られている tau -フルバ リネートの抵抗性の多くはターゲットサイトの変化によるものである。

日本では認可されていないが、海外で広く使われていたフルメトリンは、tau-フルバリネートと同じピレスロイドなので交差性がある。有機リン系のクマホス(Coumaphos)*への抵抗性も知られている。アピバール®の商品名で販売されているアミトラズ (Amitraz) は、比較的抵抗性が発達しにくいと考えられ、販売会社はヘギイタダニでは抵抗性は発達しない**としているが、メキシコやクロアチアなどで、感受性の低下が報告されている。アミトラズに対して抵抗性を獲得した害虫の例は多数報告されており、ヘギイタダニでも予断は許せない。

抵抗性の蔓延のメカニズム

抵抗性への突然変異が頻繁に起きることは考えにくい。しかし、**図20**に示したように、抵抗性を持つダニが集団の中に存在した場合、それが低頻度であっ

*クマホスは、食品衛生法(昭和22年法律第233号)において食品から検出されてはならない物質とされており、医薬品、医療機器等の品質、有効性及び安全性の確保等に関する法律(昭和35年法律第145号)においてもミツバチ等の主要な食用動物への使用が禁止されている。そのため、日本国内ではクマホスは使用禁止物質である。

**アピバールの英語のカタログには Apivar users world-wide have been unable to detect any resistance to Apivar's active ingredient.(世界のアピバールユーザーは アピバールの有効成分に対する抵抗性 を検出することができない)とある。

ても、ダニ剤の使用が抵抗性ダニの選択に働き、この図ではわずか4世代で群の中に抵抗性ダニが蔓延することになる。

		耐性率
最初のダニ	••••••	8%
ダニ剤投与	•••	25%
2か月後	••••••	25%
ダニ剤投与	•••••	83%
2か月後	•••••••	83%
ダニ剤投与	••••••	96%
2か月後		96%

図20 抵抗性のダニが増加するメカニズム

赤色の丸は抵抗性のダニを示す

ダニ研究の進展とリチウム

薬剤を使ったダニ防除は、いつか抵抗性ダニとのいたちごっこになります。 そこで、薬剤だけでなくあらゆる選択肢を利用して対処していこう、という考え方に基づいて選択肢を増やす研究が進められています。

2014年に化学構造が判明したダニの性フェロモンは、ダニの交尾行動をかく乱させたり、便乗期のダニが本来の蓋がけ直前の巣房に入るのを混乱させる効果があると報告されています。また、細菌(Bacillus thuringiensis)のある系統に、ダニを殺すがミツバチには影響を与えないものが発見されました。同様の効果がある真菌類(カビ・キノコの仲間)も発見されました。さらに、チヂレバネウイルスが増えるのを抑える目的で、RNA干渉という遺伝学の現象を利用した研究も進められています。

最近そのRNA干渉技術を利用してのダニの防除法を開発する過程で、RNAの溶液に含まれていた塩化リチウムがダニに効果があったことを偶然見つけたという論文が発表されました。塩化リチウム自体は、現在は毒物としての法規制はありませんので、将来的にはダニ剤開発に結びつくかもしれません。しかし、どういうメカニズムでダニに有効なのかは明らかでなく、また塩化リチウムを巣房の中のダニに運ぶ手立てが考えられず、糖液の中に加えて与えた場合、巣房内に貯えられ、濃縮される可能性も否定できません。高濃度や連続投与では、成虫に害があることも確認されていますので、実際に利用するには、これらの点を克服する技術開発が必要そうです。

ダニ論文数はこの10年で3倍に増加!

世界中で発表されたダニに関する学術論文数の推移を見ると、最近は年間150編ほどでセイヨウミツバチに関する論文数(771編、2016年)と比べると見劣りますが、この10年ほどで約3倍に増加しています「図21」。その内容の傾向をいくつかのキーワードを使って調べてみると、農薬に関するものは横ばい、ウイルス、分子生物学、育種、フェロモンに関する論文が増加していることがわかりました「図22」。ウイルスは、チヂレバネウイルス(DWV)、急性麻痺病ウイルス(ABPV)などに関するもの、分子生物学では育種と関連してダニ抵抗性の分子マーカーなどの論文が多いです。フェロモンでは、2013年にダニの性誘引フェロモンの化学構造が明らかになりました。私たちが論文の成果をすぐに使えるわけではありませんが、その数や種類が増えていることに期待したいと思います。

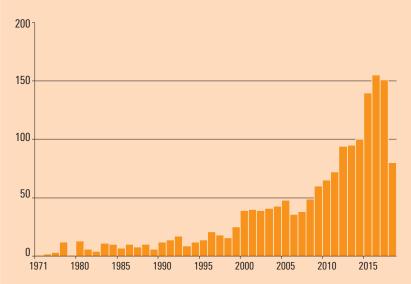


図21 ヘギイタダニの名前(Varroa)で検索された学術論文数の推移 (SciFinder Scholar調べ、2018年8月まで)

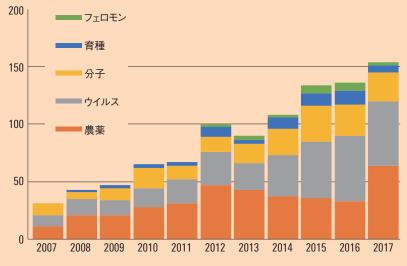


図22 ダニに関する学術論文のうち、上のキーワードを含む論文数

(SciFinder Scholar調べ、2007~2017年)

検査法

バロア症の治療には、いくつかの方法があり、どの方法を選択するかの診断においては、ミツバチヘギイタダニの寄生率を把握する必要がある。バロア症の深刻度は、基本的にはダニの寄生率(あるいは寄生総ダニ数)で評価することができ、この深刻度に基づいて、適切な方法を採用する流れになるからである。

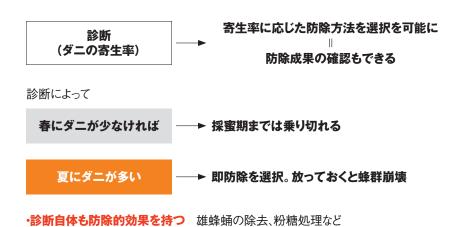


図23 診断は重要

表5 防除法を検討する際に考慮する点

- 1 蜂児のない時期であれば、ダニに直接薬剤が曝露する
- 2 巣房内にいるダニには接触毒性の薬剤では防除ができない 巣房外で雌ダニに薬剤が曝露する条件下でのみ駆除が可能である
- 3 蜂児が連続して作られているときには、若い雌ダニが出てきて繁殖力が高まっていて防除は難しい
- 4 ダニが雄蜂の蛹を好むこと、また雄蜂に付着して他の巣に入り込むことが多いこと
- 5 近隣に感染群がいる場合、雄蜂の迷い込みや盗蜂などによるダニの感染を防げない
- 6 合成殺ダニ剤であっても効果は100%ということはなく、根絶はほぼ不可能と考える(寄生率を低く保つ)
- 7 寄生率に応じて、方法を組み合わせる必要がある

ミツバチへギイタダニは目視で検出できる大きさがあり、巣箱の底や巣門前に落下したもの(多くは死骸)、あるいは働き蜂や雄蜂の体表に寄生しているもの、さらには蜂児(蛹)に寄生しているダニを直接肉眼で見ることができる。また、ダニの食害による体液不足やチヂレバネウイルスの感染が原因での翅の伸張異常も肉眼で確認でき、バロア症の深刻さを養蜂家でも知ることができる。

ダニの寄生の深刻度を、海外ではダニの自然落下数(寿命等による)を基準に判断することが多いが、日本で普及している巣箱では、これを求めにくい。したがって、以下の方法において、ダニの寄生率を求めることを推奨する。

防除法の検討の際に考慮する点を表5にまとめた。

粉糖法(シュガーロール)

一定数(蜂の重量を量るのでもよい)のミツバチを、蓋の中心部に2mmメッシュの金網を付けた円筒形の容器に入れ、ここに粉糖(製菓用のアイシングシュガーで、コーンスターチ等を添加していないもの。給餌用の白砂糖ではだめ)を、大さじ山盛り1杯(7g)*以上を入れて容器を回転させ、働き蜂全体に粉糖をまぶすようにし、そのまま1分間待つ。これでダニが働き蜂から分離するので、蓋を下にして容器を1分間軽く振りながら、粉糖とダニを金網部分から外に出す。粉糖とダニの混合物は目の細かい網じゃくしなどに入れて水で砂糖を溶かし流すことで、ダニを目視で数えることができる(ダニはこの時点では活動性を失っておらず非常によく動く)。この方法は非破壊的検査法で、使用した働き蜂を粉糖が付いた状態で蜂群に戻すことができ、ミツバチへのダメージがほとんどない(p.25「シュガーロールのやり方」参照。なお、粉糖の代わりにきなこを利用することが可能である)。

*大さじ1杯でシュガーロールは可能であるが、量が多い方がハンドリングしやすい。

計数したダニの数は、使用した働き蜂数で除算し、さらに100をかけて寄生率(ダニ数/働き蜂100匹)とする。無蜂児期であればこのまま寄生率として利用できるが、雄蜂時期であれば蜂児に寄生しているものを勘案し、求めた値を2倍して寄生率とするといった方法もある。

表6には検査結果と診断レベル(影響レベル)を示した。ここでは寄生率をミツバチ1匹あたりのダニの匹数で示している。

表6 粉糖による検査結果と診断

- 冬季 0.12匹/蜂 = 越冬失敗率上昇
- ・冬季 0.25匹/蜂 = 蜂群壊滅レベル
- ・秋季 0.03匹/蜂 = 即防除レベル
- ・春季 0.003匹/蜂 = 8月までに防除実施
- 春季 0.25匹/蜂 = 即時採蜜 + 即時防除

シュガーロールのやり方

図24 準備するもの:新聞紙、ミツバチの量をはかるもの(写真は、計量カップ(200cc))、ふるい、砂糖とミツバチ成虫を入れて混ぜるもの(写真は、果実酢作成用の筒)、砂糖(粉糖)(農研機構畜産研究部門は100g。もっと少なくても良いかもしれないが、試していない)

図25 カップいっぱいのミツバチ

図26 容器を回転させる

図27 砂糖まみれになったミツバチ

図28 ふるいで砂糖とダニを分離

図29 採集されたダニ

図30 木枠に作らせた雄蜂児のみで 構成された巣(ダニ駆除にも利用可能 な方法)

雄蜂児法

ミツバチへギイタダニは蛹期間の長い雄蜂の蛹を好んで寄生するため、雄蜂の蜂児がある、春から夏にかけてはこれを用いた寄生率検査法が実施できる。 防除を兼ねて、雄蜂巣房で構成された巣を作らせ、有蓋蜂児となったものを 200巣房程度検査に利用する方法と、巣板下部などにできた雄蜂巣房を利用 する方法がある。

有蓋蜂児の蓋を切り取り、ダニの寄生を検査する。蓋を開けた巣房を分母と して、寄生が見られた巣房を除算して、寄生率を求める。

この寄生率については、以下のように防除に反映させる。春季に、2%未満の寄生率(100巣房検査してダニ2匹)であれば、すぐに対策を取る必要はないが、2~4%であれば、そのシーズン中の防除計画を立て、4%超であればすぐに防除を必要とする。初夏に寄生率が3~7%であれば何らかの防除を必要とし、7%超であれば殺ダニ剤による緊急防除が必要となる。夏に7%未満の寄生率であれば、何らかの防除を行い、10%以上であれば緊急防除を必要とするといった基準を設けて、寄生率に応じた防除を講じるのが総合的防除(Integrated Pest Management, IPM)の考え方である。

駆除法

ミツバチへギイタダニは産卵能力を持つ成熟雌が、巣房間を移動し、また雄蜂や働き蜂の体表上にいることで蜂群間を移動して、子孫を残す。ただしミツバチの蛹に寄生する以外には増殖することができないので、蜂児がない条件下(越冬期など)は、雌ダニが加齢し、自然落下などによる死亡率も上がる。蜂児のない時期にはダニの数は自然に減り、また相対的な繁殖力も低下していると考えられる。このため、ダニの防除適期は無蜂児期となる。したがって、基本的な防除のタイミングは次の4点をあわせて考える必要がある。①蜂児のない時期であればダニに直接薬剤が曝露する、②巣房内にいるダニに対しては薬剤が届かない、③蜂児が連続して作られているときには、ダニも若返って繁殖力が高まっている、④ダニが雄蜂の蛹を好むこと、また雄蜂に付着して他の巣に入り込むことが多いこと、である。

これらのため以下のような問題がある。①巣房外で雌ダニに薬剤が曝露する 条件下でのみ駆除が可能である、②巣房内にいるダニには接触毒性の薬剤で は防除ができない、③蜂児が連続して作られている状況ではダニを減らすこ とは難しい、④近隣に感染群がいる場合、雄蜂の迷い込みや盗蜂などによる ダニの感染を防げない。

総合的防除の考え方では、蜂場の立地の見直し、衛生行動にすぐれた系統の選抜・飼育といった、養蜂スタイルそのものの改善から、雄蜂児除去や女王蜂隔離による無蜂児期間の調整、さらには準化学剤(国内ではチモール含有のダニ駆除剤「チモバール®」のみ承認を受けている)、最終的に合成化学薬剤の選択といった状況に応じた選択肢をできるだけ多様に用意しておくことが基本である。

表7 総合的防除の考え方

- 蜂場の立地の見直し
- ・衛生行動にすぐれた系統の選抜・飼育
- ・雄蜂児除去や女王蜂隔離による無蜂児期間の調整
- 準化学剤の利用

合成化学的ダニ剤による防除だけでなく、状況(被害程度、時期)に応じた選択肢をできるだけ 多様に用意しておくのが基本

表8 バロア症の防除

防除手法	実際例
化学的	養蜂用殺ダニ剤施用
準化学的	有機酸(ギ酸・シュウ酸)*噴霧等 植物抽出物(チモールなど)**
物理的	粉糖法(ダニの落下を促進)加温法等
生物学的	雄蜂巣板除去等
育種	耐性ミツバチ品種の開発

総合的ダニ管理:被害程度、時期、状況に応じて上記を組み合わせる

*有機酸(ギ酸・シュウ酸)等は、国内承認を受けておらず、使用することが望ましくない物質である。

**チモール含有ダニ駆除剤「チモバール®」が2020年より販売開始された (Appendix 2 p.35参照)

ダニの感染は蜂群間距離が100m以上であれば起こりにくいとされるが、これはすなわち、商業養蜂における一般的な蜂場内においては、もし1群でも感染群がいた場合、同一蜂場内のすべての蜂群が感染しているということである。蜂場間距離は、腐蛆病などの感染予防に2~3kmが設定されることも多いので、必ずしも感染しやすい状況にはないといえるが、蜂場内のみならず地域の蜂場すべてが、同一時期に同じような防除を行うことが望ましい。

ミツバチ側の育児サイクルを考えると、無蜂児期であれば、防除の効果が得られやすく、蜂児の生産が続く時期には効果が得られにくいことになる。雄蜂の蜂児がたくさんある場合には、働き蜂の蜂児への寄生は少ない傾向があり、病害の影響が見えにくいが、蜂群内のダニの数は増加している可能性が高い。したがって、薬剤防除の場合は、無蜂児期を狙うのが有効である。ただ、防除時のダニの寄生率が高い場合には、無蜂児期の薬剤防除でも、1%以上のダニ寄生率が持続する(防除失敗)ことがあり、あらかじめダニの寄生率を抑えておくことが重視される。このため、薬剤に依らない方法と薬剤防除をうまく組み合わせる方法の採用が望ましい。

ダニに対する駆除効果は、合成殺ダニ剤であっても100%ということはなく、根絶はほぼ不可能と考えておく必要があり、寄生率に応じて、以下の方法を組み合わせた総合的なダニ管理が肝要である。

生物学的方法

雄蜂児誘引法

雄蜂児は働き蜂の蜂児の10~12倍、ミツバチへギイタダニを誘引することが知られている。ミツバチは、一般的な飼育環境では、春期に雄蜂の巣房が不足するため、空の枠(木枠のみ)を蜂群内に挿入すると、雄蜂用の巣房のみで構成された巣を作る。女王蜂もすぐにこれに産卵を開始するので、比較的短期間に大量の雄蜂児が得られる。全体が蓋掛けされたら、これを取り出して、廃棄する(廃棄の際、100~200巣房についてダニを確認して寄生率を求めておく)。今や古典的方法と呼ぶべきではあるが、採蜜など生産期でも実施でき、初期寄生率にもよるが、数回の試行で夏までの間、ダニの数を抑えておくことに成功する。

女王蜂隔離法

無蓋蜂児期を設けるために、女王蜂を王籠等に入れて巣箱内で隔離し、一時的に産卵を止め、ダニが寄生可能な巣房がない状態を作る方法である。通常、20日間、女王蜂を隔離する。隔離だけではダニの増殖を一時的に遅らせるだけの効果しかないが、後述するように化学的防除との併用で、薬剤の有効性を向上させることができる。

化学的防除

合成殺ダニ剤

2019年11月現在、日本では国内で使用可能なミツバチへギイタダニ用に承認のある動物用医薬品は、フルバリネートを主成分とするアピスタン®と、アミトラズを主成分とするアピバール®の2種類である。いずれも短冊状のプラスチック片に薬剤が含まれており、これを巣板間に懸下して使用する。周辺を歩き回る働き蜂の体に薬剤が移り、これが巣箱全体に広がることで、巣内を歩き回り成虫の体表に付く雌ダニに効果を発揮する。ミツバチに対しての安全性もきちんと検討された選択性の高い薬剤である。フルバリネートに較べてアミトラズは遅効性とされるが、巣箱内での使用期間はいずれも6週間である。投与期間が長いため、生産計画との関係で防除期が遅くなると、ダニの数が多くなりすぎて、ダニの寄生率を必要なレベルまで下げることができない場合がある(防除直後に寄生率1%超なら、防除失敗と考える)。無蜂児期に投与する方が効果は高いが、北日本では無蜂児期が厳冬期に当たり利用しにくい。ただ、沖縄など、夏の高温期に無蜂児期となる場合には薬剤の効果が得られやすい。

合成殺ダニ剤の中には、防除効果が高い一方で、ダニが抵抗性(薬剤耐性)を発達させるものがあり、海外では30年以上前から報告がある。ダニが薬剤耐性を獲得した場合、薬剤の連用により、薬剤耐性のダニを選択的に増やすことになり、急速に効果が失われるため、複数剤の交互利用が推奨される。ただし薬剤耐性は固定されにくく、適切に無投与期間(2~3年)を設けることで、再度、薬剤が効果を示すようになる。また脂溶性薬剤が、巣の蜜ろうに吸着しやす

感受性回復

本文で記載されているように抵抗性が発達した系統でもしばらく殺ダニ剤を使用しないことで感受性を回復することが知られています。基本的には、ランダムドリフトや感受性遺伝子の流入で抵抗性遺伝子の頻度が低下するためと考えられます。しかし、殺ダニ剤の淘汰圧がなければ、抵抗性遺伝子を持つことが、生存に不利である可能性も指摘されています。最近、クマホスに対して抵抗性を発達させたダニを持つ群に5年間殺ダニ剤を与えていないにも拘わらず感受性を回復しない例が報告されています。この研究を行ったアルゼンチンの研究者は蜜ろうに残留した殺ダニ剤成分のためかもしれないと推測していますが、全く別のメカニズムの存在も否定していません。これはまれな例かもしれませんが、少なくともろうに殺ダニ剤成分が残留することは明らかなので、気をつける必要があります。

いため、巣板に高濃度に蓄積が見られる場合もある。

*有機酸(ギ酸・シュウ酸)等は、国内承認を受けておらず、使用することが望ましくない物質である。

有機酸類*

ギ酸やシュウ酸、乳酸などの有機酸類は、合成殺ダニ剤とは異なりダニ側の抵抗性を発達させることがないため、ミツバチへギイタダニの防除ではよく利用される。海外ではギ酸やシュウ酸を利用した製品もあるが、国内では未承認となっている。ギ酸の場合は、巣内で蒸散させて用いるのが一般的で、シュウ酸は数%の濃度に糖液で調製して蜂にかけるように処理することもある。

ダニ駆除率は、合成殺ダニ剤に較べて低くなるので、寄生率が高い場合には、 選択肢としては次点となる。ギ酸は、有蓋蜂児に寄生しているダニにも効果 があるとされるが、気温が30℃を超えるような高温期には、蜂児や女王蜂の 損失などの副作用が指摘されている。シュウ酸は、単回処理が原則で連続使 用は推奨されておらず、無蜂児期か、分蜂蜂球に使用する。

植物抽出成分

タイムの精油の主成分であるチモールが製剤化されて利用されている。数種の製品があるが、いずれも70~90%程度のダニ駆除率といわれ、また報告によって大きな駆除率の差がみられる。有蓋蜂児内のダニにも効果があるとされるが、文献によって効果はまちまちである。日本では、2020年にチモール含有のダニ駆除剤「チモバール®」が販売開始された(Appendix 2 p.35参照)。

総合的管理による防除

日本で動物用医薬品として使用されてきた2つのミツバチへギイタダニの合成 駆除剤は使用推奨時期が早春(2~3月)又は秋口(10~11月)で、夏季に使用で きない。また温暖化等で冬季に女王の産卵が止まらずダニの繁殖が継続し被 害拡大につながっている。

令和3年度の国庫補助事業の養蜂等振興強化推進事業の総合的病害虫管理技術構築促進事業において、2019年に動物用医薬品として承認された使用推奨時期が9~10月のダニ駆除剤を前述の合成駆除剤にプラスして使用し、併せて物理的防除及び生物的防除も加えた総合的な手法は、当該ダニの密度を抑制する効果があることが示唆された。更に、夏季のダニ防除として雄蜂児を生産させる巣枠(プラスチック製)を設置して寄生したダニを雄蜂児と一緒に除去する等の試験を進め、実用的・総合的な管理技術の確立に取組んでいる。

図31 ダニ防除のための総合的管理のイメージ

- (注)1 ①、②の薬剤はP35~37の「ダニ駆除剤の利用方法」を参照
 - 2 ③物理的防除は巣箱底部にダニがすり抜けるような網板と底面に粘着シートを置いて蜂から落下するダニを除去
 - 3 ④生物的防除は、女王蜂の産卵を止めるため巣箱内で女王蜂を隔離する措置

ダニ駆除の具体例

福岡県の取り組み

福岡県におけるダニの浸潤状況調査

2010年頃から福岡県養蜂組合員の中で、ミツバチへギイタダニ(以下ダニ)等の衛生問題がクローズアップされてきた。そこでダニ被害について現状を把握するため、県内のダニの浸潤状況調査を実施した。

県養蜂組合員4名から5群ずつ提供してもらい、計20群の雌雄成蜂数、雌幼虫数(巣房面積から算出)、および雌雄成蜂と幼虫各50頭に寄生するダニ数を調査した。

調査期間は、2011年7~11月、2012年2~6月の月1回の計10回行った。なお、組合員には駆除等も含め通常どおり管理してもらった。

その結果次のことが判明した。

- 1) 秋口にダニが雄の幼虫に寄生するとダメージが大きい。
- 2) 余分な雄巣房はカットして、ダニ汚染状況の指標とするとよい。
- 3) 合同する場合は、合同後、雄の幼虫数、そのダニの付着状況を把握する必要がある。
- 4) 箱底にダニを発見したら廃群となる可能性が高い。
- 5) 駆除剤は少なくとも年2回、春の暖かくなる前、採蜜終了直後に投与する 必要がある。
- 6) 駆除剤は2種類の異なる薬剤を交互に使用することが重要である。
- 7) 駆除剤投与期間は必ず6週間以内を守ることが重要である。
- 8) 寒暖の差が大きくなる秋口に栄養剤を補給すると効果的である。

ダニ駆除適期の調査および対策

ダニの積極的な駆除、防除目的に雄蜂誘引巣脾(以下トラップ)を用いたダニ駆除適期の調査を2015年に実施した。1組合員の1蜂場20群(巣板3~4枚)を供試してもらい、調査開始前のみダニ駆除を行い、調査中は駆除剤、栄養剤等は未使用にした。ダニ汚染状況が均一となるように区分し、5群ずつ4区設定した。ただし蜂場内での巣箱の移動は行わなかった。試験区は次のとおり。

- 1区は4月、5月、6月の上旬に計3回、トラップを各巣箱の中心に1枚設置

した。

- 2区は5月、6月の上旬に計2回、3区は6月上旬1回のみトラップを設置 1 た。
- 4区はトラップ未設置とした。なお、調査方法は前回調査と同様に行った。

その結果次のことがわかった。

- 1)トラップでダニを誘引しても群勢は変わらない。
- 2) 誘引する回数は多いほど良いとは限らない。
- 3) 4月からトラップを仕掛けると秋までのダニの総数は少なくなる。 このことは、4月の総ダニ数はいずれの区も同等数であったが、4月にトラップを仕掛けた1区はトラップ内のダニを排除したため、その後の増殖が抑えられたと考える。

以上の結果から雄蜂トラップの設置時期は次のように提案する。

- 1) 4月前(福岡県では) に誘引トラップを開始。
 - ①早春のダニ駆除剤投入時と同時期に投入する。
 - ② 駆除剤投入期間終了後(6週間) 直後に投入する。
- 2) 誘引トラップは月1回ではなく、トラップを取り出したらすぐ入れ替える。
 - ①特に早春はトラップ設置後、有蓋を確認したらトラップを取出し、直ち に新しいトラップを設置する。但し、交尾に必要な雄蜂数を確保しなが ら調整すること。
- 3) トラップを使わない、設置が難しい場合は、次のことを提案する。
 - ① 早春のダニ駆除剤投与期間終了(6週間)後、ダニの浸潤調査を実施(雄房内のダニ数確認)し、大量のダニが確認されたら、一旦雄房をカットし、次の有蓋雄房ができた段階で再調査し、できればこれを繰り返す。

ダニ防除総合対策

二つの調査および対策を踏まえ、あくまで福岡県における定地養蜂の採蜜終了時期が6月中旬の場合であるが「ミツバチ強化のためのダニ防除対策」を図32にまとめた。

	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月
駆除剤		-	-						←			
駆除剤						•						
幼♂管理			•									
<i></i> オトラップ			←									
栄養剤	4		-						←			

図32 ミツバチ強化のためのダニ防除対策

(福岡県における定地養蜂の採蜜時期6月までの場合)

表9 病原体遺伝子保有状況調査結果

	セイヨウミツバ	バチ30群あたり	ニホンミツバチ11群あたり		
	保有数	保有率	保有数	保有率	
黒色女王蜂児ウイルス(BQCV)	26	87%	7	64%	
チヂレバネウイルス (DWV)	25	83%	5	45%	
イスラエル急性麻痺病ウイルス(IAPV)	14	47%	1	9%	
ミツバチヘギイタダニ (Varroa destructor: V. d)	11	37%	8	73%	
カシミヤウイルス (KBV)	10	33%	0	0%	
トウヨウミツバチノゼマ (Nosema ceranae: N. c)	7	23%	0	0%	
サックブルードウイルス (SBV)	6	20%	5	45%	
急性麻痺病ウイルス(ABPV)	2	7%	0	0%	

飼育ミツバチの病原体遺伝子保有状況調査

一方、本県の家畜保健衛生所が、2016年6月~翌年8月、管内15市町村の養蜂家38戸41群(セイョウミッバチ30群、ニホンミッバチ11群)を対象に、14種の病原体について遺伝子保有状況調査を実施した。材料は、巣門付近で死亡または衰弱した働き蜂とし、該当個体がない場合は健常な働き蜂を捕集した。方法は、働き蜂の個体を試薬中で潰した懸濁液から核酸を抽出し、PCR法またはRT-PCR法を実施した。その結果、14種のうちダニを含む8種が検出された[28]。

セイヨウミツバチではすべての群から病原体遺伝子が検出され、中でも27群からは複数の遺伝子が検出され、3種の検出が7群と最多であり、7種検出した群も1群認めた。このことはほぼすべての群に同様の病原体が常在していることを示している。

また、同じ日に採材した直線距離600m離れている養蜂場2か所で、類似した病原体遺伝子保有パターンが認められた。このことから、迷い蜂による病原体の水平感染が考えられる。

健康なミツバチ強化のための対策

今回の調査等で、一見健常な蜂群であっても複数の病原体を高率に保有しており、常に不顕性感染(感染はしているが発症はしていない)の状態にあることが明らかとなった。

またダニは多くの病原体を媒介するため群勢への影響が非常に大きい。このことから群勢が弱くなる前に薬剤を適正に使用しながら、栄養剤の補給、また蜂場・器具等の消毒、巣箱等の更新などの総合的な衛生管理意識を強く持つことが、地道ではあるが、「ミツバチの健康をより強化するための対策」として重要なことであると考える。

Appendixes

Appendix 1

主なウイルス病

a. サックブルード(Sac brood)病

がたまった透明状態になることからサックブルードと 呼ばれている。

サックブルードウイルスは、成虫にも感染するが発症は しないため、キャリアとして幼虫に感染を広げる原因と なっているようである。日本では、セイヨウミツバチで の重症例はほとんど知られていない。一方トウヨウミツ バチでは大きな被害をもたらす。トウヨウミツバチとセ イヨウミツバチに感染するウイルスは遺伝的に違う系 統であることが分かっている。

2009年から韓国で大発生して、韓国のトウヨウミツバ 生の指標ともなる。 チの養蜂は大打撃を受けた。我が国で数年前からニホン ミツバチで九州を中心に報告されている蜂児捨て(働き 蜂が幼虫を穴から引っ張り出して捨てる) 現象の原因と考え イルス同様、ミツバチへギイタダニによって媒介する。 られている。

b. 麻痺病

数種の麻痺病ウイルスの存在が知られている。春から夏 に多く発生する。症状は蜂群の中で一部の個体にしか現 れないため、気がつかないうちに一過性で収まることが 多い。発症すると胸部背面および腹部の体毛が脱落し、 体色が黒っぽくなる。感染した働き蜂は飛べず、体や翅 本ウイルスに感染すると、蛹期に袋状になり、頭部側に水を痙攣させ死亡する。感染個体が多い場合には巣門前に 数百の死骸が見られることがある。麻痺ウイルスには、 これまでAcute bee paralysis virus (ABPV)、Israel acute paralysis virus (IAPV), Kashmir bee virus (KBV), Slow paralysis virus (SPV), Chronic paralysis virus (CPV) n3 知られている。 これらのウイルスもミツバチヘギイタ ダニによって媒介されると考えられるので、ダニの駆除 がこれらのウイルス病に第一義的な予防法である。

c. チヂレバネウイルス(Deformed wing virus)

このウイルスに感染した成虫は、翅が縮むとともに小型 になるので判別が容易であり、ミツバチヘギイタダニ寄

幼虫期で発症すると死亡すると考えられている。他のウ

図33 サックブルード病に罹った幼虫

図34 麻痺病に罹った成虫

図35 チヂレバネウイルスの感染で翅が 縮れる成虫

d. 黑色女王蜂児病(Black queen cell virus)

女王蜂の幼虫や蛹の段階で発症する。王台の色が、茶色 いる。女王のみの発症であるので、ただ単に見逃してい から黒色になるのが特徴で、王台の中で幼虫が死んでい る。働き蜂や雄蜂では発症しないと考えられている。先

の調査では、このウイルス保有働き蜂が多く発見されて るだけである可能性が高い。

ミツバチヘギイタダニの媒介によるチヂレバネ症の重篤化

翅の変形が特徴的なチヂレバネ症はRNAウイルスの Deformed wing virus(DWV)が原因です。DWVは大まか にDWV-A、DWV-B、DWV-Cの3つの遺伝子型に分類され ます。DWV-Cはハリナシバチ等で検出されますが、ミツバ チではあまり問題にならず、DWV-A及びDWV-Bがミツバ チで問題となります。ミツバチの体内でDWVが一定量以 上に増殖すると症状が現れ、DWV-A及びDWV-Bは蛹の 致死や羽化した働き蜂の翅の変形 (チヂレ) などを起こ します。しかし、チヂレバネがみられる蜂は感染個体の 20%弱にとどまり、翅の変形の有無だけではDWVに感染 しているかどうかは判断できません。DWVは脳にも入り込 み、記憶等に障害を起こすことも明らかになっています。 また、感染した働き蜂の寿命が短くなることも知られてい ます。

日本国内の30蜂群を対象とした調査では、83%の蜂群 でDWVが検出されたことが報告されています。また、遺 伝子型の調査から、検出されたDWVはすべてDWV-Aで あることが明らかになっています。

DWVの伝播経路は大まかに2つです。1つは交尾や産

卵、給餌といったミツバチの行動によって伝播する経路 ですが、この経路ではミツバチの体内でウイルスはあま り増殖せず、重篤化しないようです。もう1つの経路はミ ツバチヘギイタダニが媒介する伝播経路です。ミツバチ ヘギイタダニはDWVを含め複数の蜂病ウイルスを媒介し ます。ミツバチヘギイタダニはハチの表皮(皮膚)に穴を あけて、中の組織を食害します。その際にミツバチの体 腔にウイルスが侵入します。この経路で侵入したウイル スはミツバチの体内で増殖し、重篤な症状を起こしま す。

現在DWVは世界中の蜂群から高い確率で検出されるよ うになっています。DWVの世界的な広まりにはミツバチ ヘギイタダニの広がりが強く関係すると考えられていま す。DWVは感染個体の健康を害するばかりか、働き蜂 の記憶や寿命に影響を与えることで、間接的に蜂群全 体にダメージを与えます。DWVを含め、ミツバチのウイル ス病の治療法は無く、ミツバチヘギイタダニを駆除して 蜂群内のダニの密度を低く保つことがウイルス病の対 策となります。

Appendix 2

ダニ駆除剤の利用方法

a. アピスタン®

アピスタンの有効成分フルバリネートは脂溶性で、ハチ ミツ中には残留しにくい反面、蜜ろうに残留する。米国 における巣内で検出される化学物質で最も高い濃度で 検出されるのはフルバリネートである。このため、ミツ バチ減少にも何らかの影響を与えていることが懸念さ れている。フルバリネートと同じ成分の、植物ダニ用の 殺ダニ剤が市販されているが、代替品として使用しては いけない。また、フルバリネートと同様のピレスロイド 系の殺ダニ剤として、フルメトリンを有効成分とする製 品が海外では販売されているが日本では承認されてい ないため使用することはできない。フルメトリンの使用 は、ピレスロイド系薬剤同士で交差活性があると考えら れ、抵抗性ダニの出現を助長しないためにも違法な薬剤 を使用してはいけない。なお、はちみつ中の残留基準値は フルバリネートが0.05ppmに対して、フルメトリンはその 10分の1の0.005ppmである。

b. アピバール®

アピバールの有効成分はアミトラズで、同じ成分の殺ダ ニ剤が、植物用殺ダニ剤として市販されている。アミト ラズは水溶性で蜜ろうには残留しにくい。また加水分解 して無毒の物質に変わるため、残留に対する懸念が小さ いとされている。しかし、湿度が高いと分解し効力が下 がる可能性もある。また、これらの残留に関するデータ は、巣内環境での試験ではない物が多く、実際、貯蔵花粉 に、高濃度で残留するというデータもあり、決して巣内に ④ 投与期間終了後は、必ず巣箱から取り去ること。

残留しないと言うことではないことに注意が必要であ る。アピスタン同様、アミトラズと同じ成分の植物ダニ 用の殺ダニ剤が市販されているが、代替品として使用し てはいけない。

c. チモバール®

チモバールは、チモールを主成分とするミツバチヘギイ タダニ駆除剤であり、2019年に承認された植物オイル 系の日本国内における新薬である。主成分であるチモー ルは、Thymus vulgaris (タチジャコウソウ、一般にタイム種) に含まれる植物オイル成分由来の化合物である。アピス タンやアピバールは接触剤であるが、チモバールは蒸散 剤である。そのため、成蜂との接触がなくとも、巣箱内に チモールが蒸散し、有効成分が巣箱内にいきわたるとい う特徴がある。

使用方法は、チモバールを開封し、チモール成分のしみ込 んだウエハース状の小板(以後、「ウエハース小板」という。現 物は図38参照)を3~4週間巣枠の上にのせて投与するこ とを2回繰り返す。初回投与3~4週間後に本剤を取り 除き、新しいウエハース小板を2回目として3~4週間 投与する。投与に当たっては次に従うこと。

- ① 本剤は、標準巣箱(巣板8~9枚)1箱あたり、ウエハース 小板1枚を投与すること。ウエハース小板は半分に割 り、蜂児圏を挟んで対角線上に設置すること。
- ②投与に当たって、有蓋または蓋のない蜂児圏の近くに 置き、巣板の上に設置すること(蜂児圏から4cm程度の距 離が最適。蜂児圏の真上及び4cm未満の位置は、高温になり、 蒸散速度が速まる可能性があることから避けること)。
- ③ウエハース小板と上蓋の間を5mm空け、巣箱を閉め ること。

図36 日農アピスタン® (日本農薬株式会社提供)

図37 アピバール® (アリスタヘルスアンドニュートリション サイエンス株式会社提供)

(アリスタヘルスアンドニュートリション サイエンス株式会社提供)

11 ウエハース小板1枚を半分に割る

巣板の上に設置

2 蜂児エリア中心から4~10cm離れた 3 ウエハース小板と巣箱上蓋との間は2~3cm空ける

*投薬時は巣箱の通気孔を閉めてください。巣箱上蓋は木製のものをご使用ください

図39 チモバール®の使用方法(イメージ) (アリスタヘルスアンドニュートリションサイエンス株式会社提供)

⑤ 給餌中に投与すると、餌の摂取が悪くなるため、給餌 が必要な場合は、本剤を投与する前に行うこと。

主な使用上の注意としては、次があげられる。

- ①本剤は、外気温が1日をとおして15~30℃となる期 間において投与すること。
- 止すること。
- ③本剤は、はちみつの風味に投与後21日間は影響を与 える可能性がある。そのため、休薬期間の設定はされ ていないが、採蜜期前の使用は望ましくなく、処置後 に採蜜する場合は、必要に応じて掃除蜜をすること。
- ④ 本剤を使用した蜂群のローヤルゼリー、プロポリス並 びに蜂体は食用に供さないこと。

以上の注意の中で特に重要なことは気温である。投与期 間中の外気温については、30℃を超えるとウエハース小 板に含まれるチモール成分が過剰に蒸散してしまい、特 に投与開始3日以内は最も蒸散しやすい時期なので、週 間天気予報等で30℃を超えないことを確認してから投 与する必要がある。これらの注意を考慮すると日本では 秋季の使用が推奨される。

保管方法の注意として、チモバールは、ポリエチレンアル ミ箔にて包装されており、冷蔵、凍結、霜及び直射日光を 避け、30℃以下の室温にて保存する。

こうしたチモバールに記載される用法及び用量並びに 使用上の注意をよく読み、適正に使用を行う必要がある。

さらに、長期間にわたり1種類の薬剤のみに頼ることは ミツバチヘギイタダニの薬剤耐性の獲得を早めること

になることから、これまでは、動物用医薬品として承認さ れているダニ駆除剤「アピバール」及び「アピスタン」の 2種類を交互に使用し、耐性獲得ダニを減らすことが推 奨されてきたが、今後はチモバールを加えることで耐性 獲得ダニを減らし、一層のダニ被害抑制を期待する。

②投与期間中に30℃を超えた場合は、本剤の投与を中 なお、アピスタンの主成分であるフルバリネートとチ モールを併用すると、LD50(半数致死量)が有意に低下す るという相乗効果が報告されているため、併用は避ける 必要がある。

> また、はちみつ中へのチモールの残留基準値は30ppm と設定されている。この30ppmの残留基準値は非常に 高い基準値であり、通常「用法及び用量」及び「使用上の 注意」に従った使用において超えることは無いと思われ るが、本剤が採取物に直接混入するなどの事態があった 際に、残留基準値を超える検出があった場合は、その採取 物を販売することができないことから、取り扱いは十分 に注意する必要がある。

d. ダニ駆除剤利用時の注意点

殺ダニ剤は春季((2~)3月)と秋季(10~11月)に1回ずつ 薬剤処理を行うことが有効である。使用期限(6週間)、使 用量(巣板4枚あたり1枚)を必ず守り、説明書にしたがい、 用法を守る。現在、国内で承認されている駆除剤は休薬 期間が設けられていないが、用法及び用量通り使用しな ければ残留する可能性もあることから注意が必要であ る。使用上の注意として、採蜜期間中及びローヤルゼリー の採取期間中は使用してはならず、本剤を使用した蜂群 のローヤルゼリー及びプロポリス並びに蜂体は食用に できないと記載されている。使用効果を上げるために、 巣板の数を減らして蜂の密度を上げることが推奨され

図40 ダニ駆除剤投入の様子 (日本農薬株式会社提供)

ている。 抵抗性ダニ発生を回避するためにこの1剤を 隔年交代で使用することが望ましい。両方の薬剤を同時 に使用することは、殺ダニ剤に対するミツバチのLD50 値の低下(感受性の増加) の可能性がある。また、殺ダニ剤 総量の管理が難しく用量を超える可能性もあり、結果と してミツバチに対する毒性の上昇も起こり得るので、こ の点からも同時併用は避けることを勧める。

表10 チモバール製品概要

成分および分量		ウエハース小板1枚中 主剤 チモール・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
 効能または効果		みつばち寄生ダニ(ミツバチヘギイタダニ)の駆除			
用法および用量		本剤は、3~4週間の投与を2回繰り返すこと。初回投与3~4週間後に本剤を取り除き、新しいウエハースリ板を2回目として3~4週間投与すること。投与にあたっては以下に従うこと。 ・本剤は、標準巣箱(巣板8~9枚)1箱あたり、ウエハース小板1枚を投与すること。ウエハース小板は半分に割り、蜂児圏を挟んで対角線上に設置すること。 ・投与に当たって、有蓋または蓋のない蜂児圏の近くに置き、巣板の上に設置すること(蜂児圏から4cm程度の距離が最適。蜂児圏の真上及び4cm未満の位置は、高温になり、蒸散速度が速まる可能性があることがら避けること)。 ・ウエハース小板と上蓋の間を5mm空け、巣箱を閉めること。 ・投与期間終了後は、必ず巣箱から取り去ること。 ・可能であればみつばちに給餌を行い、給餌終了後に本剤を投与すること(給餌中に投与すると、餌の摂取が悪くなるため)。			
使用上の注意	(基本的事項)	守らなければならないこと(一般的注意) ・本剤は獣医師の指導の下で使用すること。 ・本剤は効能・効果において定められた目的にのみ使用すること。 ・本剤は定められた用法・用量を厳守すること。 ・本剤の使用に当たっては、定められた期間投与後には、必ず巣箱から取り去り、連続した3回目以降の投与は行わないこと。 ・本剤は、外気温が1日をとおして15~30℃となる期間において投与すること。 ・投与期間中に外気温が30℃を超えた場合は、本剤の投与を中止すること。 ・ 投与期間中に外気温が30℃を超えた場合は、本剤の投与を中止すること。 ・ 本剤は、はちみつの風味に投与後21日間は影響を与える可能性がある。 ・ 本剤は、はちみつの風味に投与後21日間は影響を与える可能性がある。 ・ 本剤は、はちみつの風味に影響を与える可能性があることから、処置後に採蜜する場合は、必要に応じて掃除蜜すること。 ・ 本剤を使用した蜂群のローヤルゼリー、プロポリス並びに蜂体は食用に供さないこと。 ・ 使用前に添付文書等をよく読み、十分理解した上で使用すること。 ・ 本剤は、「使用基準」の定めるところにより使用すること。			
	(使用者に対する注意)	・本剤の使用時にはゴム手袋を使用すること。・使用後は手を洗うこと。又、皮膚に付着した場合は直ちに石鹸等で良く洗うこと。			
	(みつばちに関する注意)	 ・本剤の投与前に本剤の効能又は効果であるミツバチへギイタダニの寄生が認められることを確認し、これ以外の異常が認められる場合は投与しないこと。 ・摂餌量が減少する可能性があるため、砂糖の給餌器の近くにウエハース小板を置かないこと。1回目の投与時に給餌器と本剤を設置して蜂児の成育が止まり始めた場合は、1回目の投与開始3週間後にウエハース小板を取り除き、給餌終了後に2回目の投与を開始すること。 ・高い気温等何らかの原因で巣箱内の有効成分が高濃度になった場合には蜂群が忌避的行動をとり、女王蜂の消失を伴う場合がある。これを避けるため、蜂群の忌避行動の有無を観察して、巣箱内の温度上昇を防ぐ処置をすること。 ・本剤を設置する巣箱内上部の温度は、外気温の上昇に伴って変動し、巣箱内の有効成分濃度が高くなる可能性がある。このため、外気温が高い場合は、蜂群の忌避行動の有無を観察して、巣箱内の温度上昇を防ぐ処置をすること。 ・巣門を閉めることにより巣箱内の温度が通常より高くなることから、転飼養蜂等により巣門を閉めて巣箱を移動する場合には、本剤は使用しないこと。 ・本剤の安全性試験における3倍量投与群において、女王蜂の忌避行動による女王蜂消失が認められたため、高濃度の投与は行わないこと。 			
	(取扱い及び 廃棄のための注意)	・小児の手の届かないところに保管すること。 ・本剤の保管は直射日光、高温、多湿及び霜を避けること。 ・開封後は直ちに使用し、保存しないこと。 ・本剤の冷蔵庫・冷凍庫での保管は避けること。 ・使用済みの容器は、地方公共団体条例等に従い速やかに処分すること。 ・本剤を廃棄する際は、環境や水系を汚染しないように注意し、地方公共団体条例等に従い速やかに処分すること。			
貯蔵方法		室温、気密容器 冷蔵、凍結、霜及び直射日光を避け30℃以下に保存			
包装		ポリエチレンアルミ箔 2袋=1パック(ウエハース小板10枚)			

(アリスタヘルスアンドニュートリションサイエンス株式会社提供 ※一部修正)

Appendix 3

ダニ抵抗性ミツバチ系統の育種

ヘギイタダニに抵抗性のあるセイヨウミツバチを育種 いる。しかしVSHを計ることは簡単ではない。残念なが しようとする試みが行われている。ダニに対してより高 い抵抗性を持つ系統の子孫を後代に利用する(選抜育種) ことを繰り返し、その抵抗性をどんどん高めていこうと する試みである。実際、ダニ抵抗性のミツバチ系統はい くつか知られている。それらのほとんどは、巣内の掃除 (感染された幼虫を巣の外に運び出す)をよくする系統か、ダ ニをグルーミングするかによって、抵抗性を持つと考え られる。

衛生的行動をよく行う蜂群は、有蓋、無蓋の蜂児の種々の 問題を察知し、問題ある蜂児を取り除く。蜂児を取り除 く掃除をよくする群を直接選抜してくるのは難しいの で、有蓋蜂児を凍らせたり、針で殺したりして、その後、死 れた系統を見つける試みがなされている。本文p.13でも んだ蜂児の掃除をする程度を評価基準にしている。

別の系統は有蓋巣房の中のダニも察知し、蓋を取り除い

て蜂児を捨てる。この行動により、多くの場合寄生して いるダニも一緒に捨てられる。Varroa Sensitive Hygiene (VSH) (ヘギイタダニ感受性衛生行動) はこの最たるもので、 VSH系統のミツバチは、巣房の中のダニを発見でき、ダ ニが繁殖している場合だけ蜂児を取り除くと言われて ら掃除をよくする系統とVSH系統は遺伝的に関係が無 いことが知られている。

グルーミング行動をする成虫は、自分自身や同じコロ ニー蜂を、脚を使ってくしのようにすく。そのことでダ ニも蜂から落ち、多くのダニが減少する。また、ダニの脚 などをかじることも、グルーミングに含まれている。巣 箱の底に貯まった脚がかじられたダニ死骸数で選抜が 可能かもしれない。

これらのように選抜によって抵抗性を高めていこうと する試みとは別に、自然集団の中から、抵抗性を持つとさ 紹介した、沿海州で見つかったダニ抵抗性系統(ロシア系 統)は有名で、アメリカでは女王蜂が市販されている。

Appendix 4

ダニ被害実態調査 アンケート結果報告書

平成31年度養蜂等振興強化推進事業(全国公募事業)

目的

本事業(平成31年度養蜂等振興強化推進事業)では、養蜂の現場におけるダニの被害の実態調査として、春季の蜂群状態(越冬成績および採蜜成績)とダニ駆除剤の使用状況やその他の防除法の試みに関しての情報を日本養蜂協会の会員養蜂家から収集し、結果を分析して、当面の課題の抽出に利用するために行った。

調査期間

アンケート発送:2019年7月19日 回収期間:7月30日~10月22日

調査対象

日本養蜂協会会員(発送総数2915部)

調査方法

記述式アンケート(郵送による返却)

回収状況

回収1080部(回収率37%)(うち現状のセイヨウミツバチ飼育者1040名)

編業1 アンケート回答者の実像

1.1 飼養規模(セイヨウミツバチ届出蜂群数)

全回答者(1080名)のうち、今回のアンケートの目的に合致するセイヨウミツバチの届出蜂群数が1群以上の有効回答者は1040名(96%)で、飼養規模別除内訳は**図41**の通りであった。

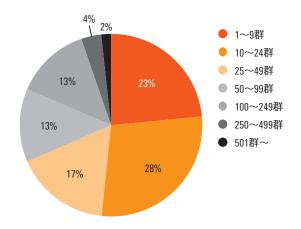


図41 アンケート回答者の飼養規模分布

また、1040名のうち、アメリカなどで商業養蜂家と趣味養蜂家を分ける基準数(全米ハチミツ協会National Honey Board)となる蜂群数の25群未満の飼養者(趣味レベル主体)が537名(52%)、25群以上の飼養者(商業レベル主体)が503名(48%)で、今回のアンケートの回答者は、両者の状況を概観するのには偏りが小さく好適であった。

1.2 養蜂の経験年数

有効回答者(1059名)の平均経験年数は22年で、経験年数1~10年が384名(36%)、11~20年が293名(28%)、21年以上が382名(36%)であった。飼養規模別には25群未満の飼養者の平均経験年数が17年に対して、25群以上の飼養者の平均経験年数が27年で有意な差が見られた(t検定、P<0.001)。したがって、商業養蜂家を主体として含む25群以上の飼養者は、蜂群ごとの差や年次ごとの差を体験的に理解できていると考えられ、相対的に養蜂に関する経験値の高いグループといえそうである。

1.3 養蜂の目的

養蜂目的(複数回答あり、のべ1327回答)としては、採蜜が1002回答(76%)で最も多く、交配用蜂群が236回答(18%)、種蜂生産が62回答(5%)であった。回答者(1057名)のうち、採蜜のみを目的とするものは772名(73%)、これに交配群養成を兼業するものが161名(15%)で、全体として採蜜を目的とした養蜂が営まれていることがわかる。また、25群未満の飼養者がほぼ採蜜のみを目的としているのに対して、25群以上の飼養者は、採蜜以外の目的(交配用蜂群や種蜂生産)が付加され、業態が多様化する傾向がみられた(χ2検定、P<0.05)。

また、転飼を含む飼育形態をとる養蜂家は1040名中443名(43%) おり、採蜜(58%) および越冬(31%) が主な転飼の目的であった。転飼は飼養規模が25群未満の飼養者では26%、25群以上の飼養者では70%が行っていて、飼養規模によって有意な差が見られた(χ2検定、P<0.001)。

結果2 養蜂成績

2.1 越冬成績

図42に示すように、越冬成績について「満足」(「満足」および「やや満足」の合計)と回答したものが293名(27%)にとどまったのに対して、「不満足」(「やや不満足」および「不満足」の合計)と回答したものが408名(38%)に達し、全体と

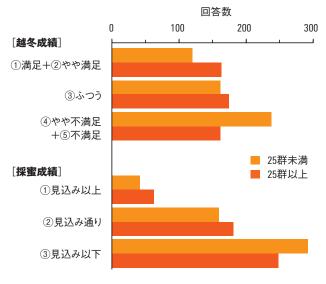


図42 2019 年シーズンの越冬成績および採蜜成績

して越冬成績については満足度が低い傾向となった。また、25 群未満の飼養者では、「不満足」が520 名中238名 (46%) と半数に近かったのに対して、25 群以上の飼養者では、「不満足」の比率は33%で、両者には有意な差が見られた(χ2検定、P<0.05)。養蜂の経験値の高い25 群以上の飼養者でも、全体の1/3 が良好な越冬成績を得ていないことから、越冬の失敗の原因については精査が必要であると考えられる。

2.2 越冬期間中の無蜂児期の有無

越冬期間中の無蜂児期の有無は、ダニの繁殖に大きな影響を与える因子として考えられており、無蜂児期がない場合は、ダニが繁殖を継続して、蜂群が影響を受けやすいと考えられる。無蜂児期の有無について得られたのべ1085回答(複数回答あり)においては、無蜂児期が「1か月以上ある」は327回答(30%)、「短いがある」は249回答(23%)となり、「無蜂児期がない」が135回答(12%)にとどまった。「蜂群間で異なる」は229回答(21%)で、また「無蜂児期があるかどうかわからない」が145回答(13%)に達した。

無蜂児期の有無と、ダニ被害の深刻さについての回答には一定の傾向はなく、ダニの影響について「非常に深刻」または「やや深刻」が、無蜂児期が「1か月以上ある」と回答したのべ299名において226名(76%)、無蜂児期が「ない」と回答した129名では102名(79%)と統計上の有意な差は見られなかった(χ2検定、P>0.05)。このため無蜂児期がない、ダニの繁殖に関して高リスクな条件であるかどうかとは関係なく、ダニの影響が深刻になっている

ことが推察された。

なお、無蜂児期について「わからない」と回答したものが、25群以上飼養者ではのべ519回答中27回答(5%)であったのに対して、25群未満の飼養者ではのべ533回答中112回答(21%)と有意に多くなっていた(χ2検定、P<0.05)。このことから25群未満の飼養者は、越冬時の蜂群の状態を把握できていない傾向があることが示唆された。

2.3 採蜜成績

採蜜成績については、採蜜を行わなかったという回答者を除いた1007名のうち、「見込み以上」のものが107名(11%)、「見込み通り」が349名(35%)で、一方、「見込み以下」と答えたものは551名(55%)で、半数を上回った「四42」。なお、「見込み以上」との回答者は、25群未満の飼養者493名中42名(9%)で、25群以上の飼養者492名中63名(13%)、また「見込み以下」との回答者は、25群未満の飼養者では292名(59%)、25群以上の飼養者では492名中248名(50%)となっていて、回答の分布には飼養規模によって有意に偏りが見られた(χ2検定、P<0.05)。

全体に採蜜成績が悪い原因としては、開花中の天候不順(35%)や開花状況が悪い(20%)など蜜源の状態の悪さを挙げたものが半数を超えたが、建勢が遅かった(29%)、ダニの被害(5%)など蜂群側の問題を挙げたものも1/3を占めた。越冬成績と採蜜成績の間には弱い相関関係(r=0.369)が見られ、越冬成績がよいほど採蜜成績もよい傾向は見られたが、越冬成績の分布に較べて、採蜜成績の評価が全体に低いことから、開花状況など越冬成績以外にもさまざまな要因の影響が大きいことが示唆された。

結果3 ダニ被害

3.1 ダニ被害の深刻さ

ダニの被害については全1054名の有効回答中、747名 (71%)がその影響が「深刻」(「非常に深刻」および「深刻」の合計)と回答し、「深刻でない」(「それほど深刻ではない」および「まったく深刻ではない」の合計)と回答したのはわずか170名(17%)にとどまった「図43」。

飼養規模別に見ると25群以下と25群以上で、回答の 分布には有意な差があり、25群以上の飼養者において 「非常に深刻」との回答が有意に多かった(χ2検定、P< 0.05)。なお、めだった地域差は見られず、「深刻でない」との回答が「深刻である」との回答を上回ったのは4県のみで、「深刻である」との回答が28%であった新潟県が最も影響のとらえ方が小さくなっていた(回答者32名)。

このダニの被害が、養蜂のどの場面で感知されるかについて複数回答での回答を求めたところ、有効回答数1740回答のうち、「建勢の悪さ」が580回答(33%)、「越冬困難」が542回答(31%)で上位を占めた。次いで、「越夏の困難」が304回答(17%)、「採蜜成績の悪化」が228回答(13%)であった。飼養規模別では回答の分布に有意な差が見られ(χ 2検定、P<0.05)、25群以下では「建勢の遅さ」を、25群以上では「越夏の難しさ」でダニの影響を体感していることが明らかになった。

3.2 ダニの駆除の必要性

このダニの駆除の必要性については、有効回答者1053名のうち、920名(87%)が「絶対に必要」、114名(11%)が「状況によっては必要」と回答し、ダニ防除に関して「必要を感じない」の19名(2%)に対して大きな比率となったことから、多くの養蜂家にとって喫緊の課題がダニ防除であることは明らかであった。

3.3 ダニ防除の回数と時期

実際にダニ駆除剤を用いたダニ防除を行ったと回答した993名のうち、詳細回答のあった973名において、薬剤防除を1回のみ実施したものが159名(16%)、2回のものが482名(50%)、3回のものが332名(34%)であった。 図44に示すように、飼養規模によって駆除の実施回数分布に差があり、25群以上の飼養者では1回のみ実施しているものは有意に少なかった(x2検定、P<0.05)。

防除を行う時期は、地域的にも養蜂家によっても異なり、また回数が多い場合は全体としての防除期間が長くなる。そこで、単回から複数回の防除を行う飼養者の実際に防除を行った時期(のベ回答数2147回答)をまとめると、**図45**に示すとおり、主な採蜜期を除く、2~3月および7~11月に防除が集中していた。

3.4 ダニ駆除剤

一人の養蜂家が年間に複数の薬剤を使うケースもあるため、すべての使用薬剤についてののべ回答数(2155回答)から、各使用薬剤の比率を求めたところ、アピバール(アミトラズ含む)が1246回答(58%)で最もよく利用され、

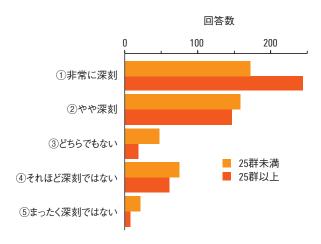


図43 ダニ被害に対する深刻さの意識

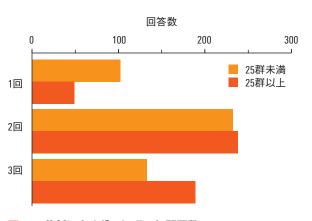


図44 薬剤によるダニ処理の年間回数

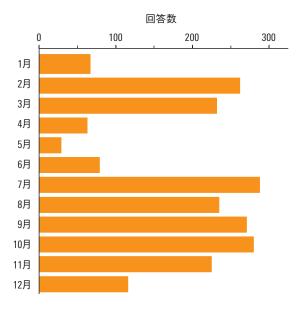


図45 ダニ駆除剤の使用時期

次いでアピスタン(フルバリネート含む)が752回答(35%)となった。それぞれの主成分を含むハダニ剤である、ダニカット(39回答、2%)およびマブリック(54回答、3%)については、ハダニ剤の流用があることを示している。現行の動物医薬品以外では、シュウ酸(アピバイオオキサル糖

液を含む)が21回答、ギ酸が18回答、チモール製剤が4回答あったことから、現行2種の薬剤では充分な効果を得られず、多様なものを試している養蜂家が一定数いることも確認できた。

年間に、複数回の薬剤によるダニ駆除を行う814名のうち、単一の薬剤を繰り返し使用するものが320名(39%)、2種類以上の薬剤を使用するものが494名(61%)であった。複数回の防除で、単一薬剤を使用するか、複数の薬剤を使用するかについては、飼養規模による統計上の有意な差は見られなかった(χ2検定、P>0.05)。このことは、複数回防除を行う飼養者の多くが経験的なものではなく、ダニの薬剤抵抗性発現に対応した防除計画に基づいた防除知識を有していることを示している。

3.5 雄蜂児除去による防除

雄蜂児除去は、必ずしもダニ防除としてではなく、通常の 飼育管理の中で習慣的にも行われているようであった。 この設問の有効回答者952名のうち、391名(41%)が、目 的は別として、雄蜂児除去を行っていた「№46」。25群未満 飼養者では、25群以上飼養者に比較して、雄蜂児除去を 行っているものが有意に少なかった(χ2検定、P<0.05)。

図47に示すように雄蜂児除去は年間を通じて行われており、特に雄蜂生産時期となる4~7月に集中していることから、ダニ駆除剤を利用できない採蜜期に、雄蜂児除去を組み合わせることで、年間を通じてダニに対する防除圧を高く維持しながら、ダニの影響を受けにくい飼養管理ができる可能があることを示している。

3.6 その他の対処法

薬剤以外のダニ防除法として上げられた回答(195回答)の中にも、シュウ酸(シュウ酸糖液法を含む)やギ酸などの準化学剤利用による防除が31回答(16%)あった。生物学

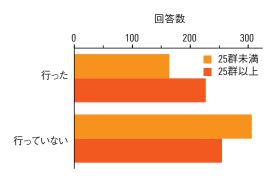
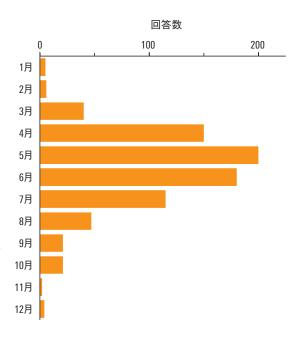



図46 雄蜂児除去の実施状況

図47 雄蜂児除去のタイミング

的方法として、女王蜂の隔離や蜂児枠の除去など、何らかの手段によって無蜂児期間を確保するとの回答が20回答(10%)、シュガーロール法や粉糖による防除、粘着板による防除なども8回答(4%)得られた。一方でダニに対しては直接効果のない巣箱の消毒(18回答、9%)や蜂場の消毒整備(22回答、11%)、ダニとの関係の不明確なものなども多数挙げられた。

総合考察および提言

今回のアンケート調査からは、ダニの被害を建勢の遅延 や越夏および越冬成績への影響として実感している養 蜂家が多かった。採蜜成績は蜂群以外の要因も大きいが、 今回、越冬成績と採蜜成績には弱い相関がみられ、採蜜成 績の一部がダニ被害の影響と考えることにも一定の妥 当性があることが示された。この点で、ダニ被害は、養蜂 を営む上での最大の脅威であることは明らかである。

越冬期間中の無蜂児期の有無は、生物学的にはダニの繁殖を抑える効果を有すると考えられるが、現実には、ダニ被害の深刻度と関係が認められなかった。これは、集団飼育下のミツバチにおいては、蜂群間に防除成績のばらつきがあること、また近隣にダニのいる蜂群があることで再感染が起こりやすいといった事情も影響を与えていると考えられる。

養蜂家は、ダニ被害の影響が深刻であると受け止めてい

大な問題と認識されていた。しかし、実際には、25群以 上飼養者の方が、越冬成績においては、ある程度満足のい く結果を、採蜜成績についても、25群未満飼養者よりも 見込み通り+見込み以上の成績を上げていた。これは職 業観による差であるとも考えられるが、実際には養蜂を 営む上での重要な指針になる越冬成績や採蜜成績を上 げられない25群未満飼養者において、ダニ被害の影響を 充分に考慮に入れられず、年間の飼養計画におけるダニ 対策が、効果を示すものとして不充分なものになってい る可能性もあった。また、25群未満の飼養者では、越冬 中の蜂群状態の把握ができていないことも含めて、全体 として養蜂技術や病害虫に関する経験値および知識の 普及が不充分であることが示された結果であった。この ため、今後、ダニの防除を広域的に行うといった包括的な 対策を実施する場合には、25群未満の飼養者が技術普及 の障壁にならないように、ダニの防除に関する啓蒙活動 や、技術講習を行う必要を感じる。

て、特に25群以上の飼養者(商業養蜂主体)においては、重 現在のダニの防除は、動物医薬品の普及にしたがって技 術が普及してきたこと、単剤では効果が低いといった情 報が流布していることもあり、ダニの耐性獲得に対応し た複数薬剤の利用による複数回の薬剤防除が、経験に関 わらずある程度浸透しているようである。採蜜期にはダ ニ駆除剤が利用できないため、この期間には雄蜂児を除 去する方法を組み合わせることで、年間を通じてダニの 寄生率を効果的に低減させ、常にダニの繁殖を抑制でき るような高い防除圧を維持した状態で飼育管理するこ とで、ダニ被害の影響を限定し、養蜂の持続的可能性を高 められる可能性はある。

> したがって、今後は、越冬成績に影響する原因の解明、採 蜜成績に関わる蜜源側の状況調査、25群未満の飼養者 (趣味養蜂を主体とするグループ) を対象の中心とした飼養管 理技術の普及、およびダニの生態をも含む、養蜂に関する 全体的な知識の普及を行っていく必要性があると考え られる。

Appendix 5

ミツバチヘギイタダニ 浸潤調査報告書

平成31年度養蜂等振興強化推進事業(全国公募事業)

目的

本事業(平成31年度養蜂等振興強化推進事業)では、セイヨウミツバチ養蜂における、最大の脅威のひとつであるミツバチへギイタダニ(以下、ダニ)の、全国の浸潤状況を調査するために、日本養蜂協会の会員養蜂家に依頼して、ミツバチの検体の収集を行った。収集した各検体から分離されたダニによって蜂群ごとの寄生率を求め、ダニの浸潤状況の実態を把握した。また検体収集時に行ったアンケート調査から、各養蜂家が取り組んでいるダニの防除実態の情報を得て、これと寄生率の出現傾向を合わせて解析を行い、ダニの蔓延抑制のための課題を抽出することを目的とした。

方法

各協力養蜂家に、働き蜂(検体)のサンプリングキットを9月上旬に送付し、9月後半~10月前半に得られた検体を 玉川大学ミツバチ科学研究センターに冷凍状態で送付 してもらった。到着後はすぐに開封し、ダニの分離作業 までは、75%エタノールに浸漬保存した。また、検体ごと にダニの防除履歴などの情報をアンケートとして収集 し、これも集計した。

ダニの分離においては、専用の容器内で振盪し、粗いメッシュ(ダニが通過しミツバチは通過不可のもの)を用いてダニをミツバチから分離する作業を、最終的にダニが見られなくなるまで繰り返して(ダニが非常に多い場合で、1サンプルにつき最大20回程度)、ダニを収集して、個体数を目測で計数した。ミツバチについては働き蜂の10匹重をサンプルごとに計測し、全重を除算してミツバチの匹数(検体蜂数)として求め、これに基づいて検体ごとの寄生率(蜂群寄生率、%;ダニ数/働き蜂100匹)を算出した。

送付されてきた検体の蜂数(指定は200匹程度) は養蜂家間で変動が大きく、平均値(±標準偏差) は662 ± 309 匹で(78養蜂家からの389検体)、最大1897 匹、最小は69 匹であった。最小の検体蜂数ではダニは検出されなかったが、検体蜂数と分離されたダニの数および検体蜂数と検出率の間には相関が見られず(それぞれ、r=0.160 およびr=-

0.039)、検体蜂数がダニの検出確度に与える影響はほとんどないと考えられた。一方で、一般的なダニ検出法では300匹程度の働き蜂を用いることとなっているが、今回は平均して倍量の働き蜂を使ったため、全体としては精度の高い寄生率調査を実現することができたと考えられた。

アンケートから得られた蜂群ごとのダニの防除の実態と、各蜂群の寄生率を合わせて解析し、防除がダニの寄生率にどのように影響しているかを解析した。また各養蜂家からは3~7検体(指定は5検体)を得ており、これに基づいて養蜂家ごとの検体のダニ寄生率の平均(蜂場寄生率)も求め、蜂場単位での防除成功がどのように達成できているかについても解析を試みた。

統計解析は、Excel (Microsoft製) およびXLStat (Addinsoft 製) を用いて行った。

結果および考察

ミツバチへギイタダニは、検体供出者78名中、71名 (91%) から収集した検体中、少なくとも1検体以上で検出された。供出した検体のすべてでダニが検出されたのは32名(41%)、検体の50%超で検出されたのが56名 (72%) となっていた。一方で、全検体からダニが検出されなかったのは7名(9%) にとどまった[848]。送付された検体が同一蜂場のもの、あるいは同一養蜂家の飼養群であることを考えると、現状のダニの浸潤状況は深刻で、蜂場単位での防除成功率が低いことが示唆される頻度分布となった。

また供出された全389検体中では、269検体(69%)でダ

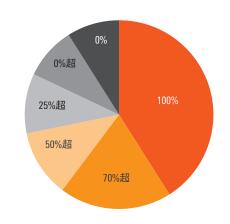


図48 検体提供者ごとの検体中のダニ検出群の頻度分布

ニが検出された。各検体のダニ寄生率の平均(±SEM)は3.6±0.4%であった。寄生率は最小値が0%、最大値が79.2%で、検体間の変動が極めて大きかった(変動係数CV=209%)。一方で、120検体(31%)からはダニが検出されておらず、寄生率の中央値が0.6%と平均値よりも大幅に小さな値となっていることから、寄生率は全体としては低い側に偏った分布となっていて、蜂群のすべてが深刻なダニの影響を受けているのではないともいえる。ただし、これは、ダニ防除時期と検体の収集時期が近く、直近の防除の効果としての低寄生率となった可能性も高い。

図49に示すとおり、ダニ防除の成功率(供出検体中の寄生率 0%蜂群数)とダニの寄生率には明確な関係があり、供出検体のすべてでダニが検出された養蜂家の蜂群のダニ寄生率は平均で7.1 ± 1.1%と、1検体でも寄生率0%の蜂群を有している養蜂家に較べて有意に高い値となっていた(ANOVA, Tukey, P<0.001)。これはダニ寄生率が0%の検体をひとつでも供出できた養蜂家の蜂群は、供出前に基本的にダニの防除が行われていて、平均寄生率が下がっていたことを示している。検体と同時に送付されたアンケートに基づいて、各検体を得た蜂群に対する何らかの薬剤防除の有無とダニの寄生率を比較したところ、図50のように、防除を行っていない蜂群から得られた検体では、寄生率が有意に高くなっていた(ANOVA, Tukey, P<0.001)。

薬剤による防除は、アンケートの結果からは年間に $0\sim$ 3回行われていた。この防除回数とダニの寄生率の間には相関は見られなかった(r=-0.183)。無防除に較べて、回数を問わず防除を行う方が有意に寄生率が低かった(ANOVA, Tukey, P<0.001)。 $1\sim3$ 回の防除回数間での統計的な有意差は認められなかった[851]。

薬剤防除の季節については、回数が多い場合には複数の季節に渡るため、投与タイミングを季節ごとに集計した(春:3~5月、夏:6~8月、秋:9~11月、冬:12~2月)。無防除に較べていずれの時期に防除を行っても有意に寄生率は低下していて(ANOVA, Tukey, P<0.001)、秋と別の季節を組み合わせて薬剤防除を行った場合に、統計的有意差は認められないものの、寄生率が抑えられる傾向が確認された[852]。したがって、秋を含む、年間2~3回の薬剤防除が、ダニの寄生率を低く抑える上では有効であると考えられた。

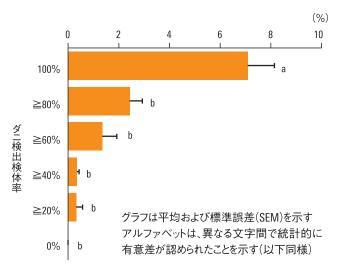


図49 供試検体中のダニ検出検体率と平均寄生率

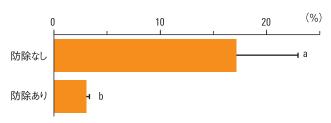


図50 薬剤防除の有無とダニの平均寄生率

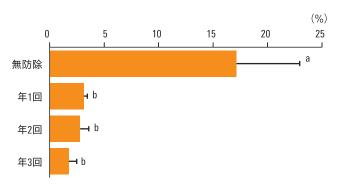


図51 年間防除回数とダニの平均寄生率

ダニの防除に使用される薬剤については、動物医薬品として登録のあるアピスタンおよびアピバールのほか、シュウ酸やギ酸を使用しているとの回答があった。アンケートの回答からは、複数回の防除を行う養蜂家でも、単独の薬剤を異なる時期に利用する場合と、複数の薬剤を同じ季節に連続的に使用する場合、さらには異なる季節に異なる薬剤を輪番で使用をしているケースなどが見られた。そこで、使用している薬剤によるダニの平均寄生率を図53に示した。薬剤名不明のケースを除いて、いずれの薬剤の利用でも、無防除に対して有意にダニの寄生率を低下させており(ANOVA, Tukey, P<0.001)、ダニの平均寄生率はアピスタン単独利用(回数については不問)で

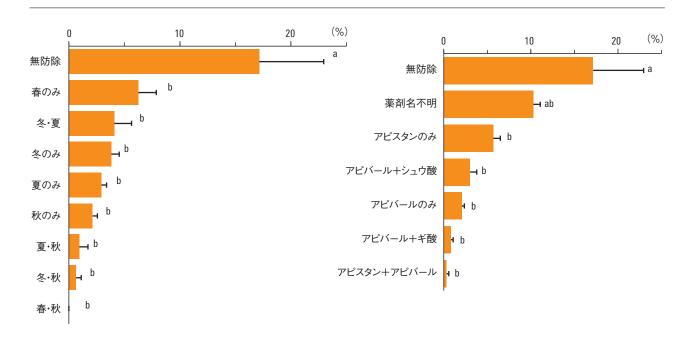


図52 防除時期とダニの平均寄生率

図53 使用した防除薬剤とダニの平均寄生率

は5.7% (n = 97)、アピバール単独では2.1% (n = 242) であったのに対して、標本数は少ないがアピスタンとアピバールを年間で時期をずらして利用する場合には0.3% (n = 10) と、寄生率が最も低くなっていた。

蜂場寄生率が1.0%未満で、ダニの防除に成功している 養蜂家を抽出し、アンケート上の記述をもとに薬剤防除 の実施実態を表11に示した。アンケートに回答した115 名中78名がアピバールの利用者であることを反映して、 アピバールでダニの防除に成功しているようにも見え るが、実際にはアピスタンおよびアピバールのいずれを 利用していても、寄生率を1%未満に維持する良好な防 除成果が得られていることは注目に値する。

総合考察と提言

今回の検体のうち、薬剤防除を行っている蜂群からの検体と、行っていない蜂群からの検体で、ダニの寄生率はそれぞれ17.2 ± 5.8% と 3.0 ± 0.3% となり、5倍以上の差がみられた。このことは、多くの養蜂家が行っている薬剤によるダニの防除は、現状では、ダニの寄生率を低下させるという点において、一定の成果を収めていると

表11 ダニ防除成功事例(寄生率1.0%未満の29名)と防除実施実態

平均寄生率	使用薬剤	使用時期(薬剤)・・・人数
0%	アピバール	2月…1名、7月…3名、9月…2名
	アピスタン	2月…1名、9月…1名
0.5%未満	アピバール	2月…1名、7月…2名、8月…2名、
0.3%木冲		9月…2名、11月…2名
	アピスタン+アピバール	2月(A/V)+7月(V)+9月(A/V)···1名
	アピスタン	7月…2名
	アピバール	8月…2名、9月…2名、8月+9月…1名
0.5~1.0%未満	アピスタン+アピバール	1月(V)+9月(A)···1名
	アピバール+シュウ酸	8月(V)+12月(OA)···1名
	アピバール+ギ酸	2月(V)+7月(FA)···1名

注 A=アピスタン、V=アピバール(A/Vはいずれか一方)、OA=シュウ酸、FA=ギ酸

評価でき、現状では、養蜂経営において、ダニの被害対策なっていた。 として薬剤防除をしない選択肢はないともいえる。

ダニの寄生率と防除の必要性、あるいは防除の有効性 についてはこれまでにも多くの研究が行われてきてい る。 例えば Delaplane and Hood (1999) は、アメリカ南 西部の山麓地帯において、8月時点での要防除基準とし てのダニの寄生率を8~13%としており、Strange and Sheppard (2001) は、アメリカ北西部のワシントン州で、 夏に寄生率が13.7%であった蜂群でも、越冬前にダニの 防除を行えば、越冬成功が可能であったとしている。し かし、近年になってHoney Bee Health Coalition (2018) は、こうした過去の研究での防除指針で用いられてきた 防除閾値が大きすぎるとして、表12のように非常に低い ダニの寄生率での防除実施を推奨するようになってい る。今回、薬剤防除を行った蜂群から得られた検体(9月の 蜂群)のダニの平均寄生率の3.0%は、表に示す秋季蜂群 の防除閾値の2%未満に比較すると充分に大きな値とい える。つまり、今回調査した蜂群については、389群中の 139群(36%) が危険状態で、即防除の対象となることを 意味しているが、その大半は薬剤防除が行われている蜂 群であり、防除の効果が充分ではないことを示す結果と

表12 蜂群の時期ごとのダニ防除閾値

時期	許容範囲	危険状態 (即防除)
越冬期(有蜂児)	<1%	>2%
越冬期(無蜂児)	<1%	>3%
建勢期(春)	<1%	>2~3%
蜂量ピーク時	<2%	>3%
衰勢期(秋)	<2%	>2~3%

Honey Bee Health Coalition (2018)

ダニの防除に成功している養蜂家(蜂場寄生率が1.0%未 満)が、単一の薬剤を単回利用している事例も見られる が[素11]、他の要因、例えば蜂群の移動・移入が行われるか どうか、群数が多いか少ないか、近隣に他の蜂場がある かといった事情はそれぞれに異なる。また、防除指針(防 除閾値)には地理的な変動があることも知られており、さ らには飼育技術や飼育環境、資源量、ダニ以外のミツバ チの健康面などの差も考慮すれば、無条件に単一薬剤の 単回投与で防除が成功するとは考えにくい。全体像から 見られるように、秋を中心に年に2回以上の防除を行い、 防除用の薬剤として動物医薬品として登録のあるアピ バールおよびアピスタンを交互に利用すれば、現状でも 比較的良好な防除効果を期待できる。使用薬剤の種類や 投与回数などに表れるダニ防除への金銭的および労働 投資の多いことが、全体としてダニの寄生率を低下させ ている傾向が見られたことからも、入念な防除計画の立 案とその実行が必要であろう。

今回の調査において、ダニの薬剤防除の成功(蜂場寄生率 1.0%未満) は検体を供出した養蜂家の37%で達成できて いる。一方、供出した検体すべてで寄生率が0%となっ たのは全体のわずか9%の養蜂家であった。同一蜂場内 にダニ寄生蜂群が残存していれば、すぐに周辺の蜂群へ の蔓延が始まり、コストをかけた防除の効果が大きく低 下することも予想される。したがって、計画的な薬剤防 除で、年間を通じてダニ寄生率を低く維持することはも ちろん、さらに蜂場の単位での防除成功を目指すことが 重要な課題になる。このためには、薬剤防除の成果を養 蜂家自身が把握するため、シュガーロール法などの簡便 で精度の高いダニ診断法の普及も望まれる。

引用文献

Delaplane, K. S. and Hood, W. M. 1999. Economic threshold for Varroa jacobsoni Oud. in the southeastern USA. Apidologie 30: 383-395.

Honey Bee Health Coalition. 2018. Tools for Varroa management. A guide to effective Varroa sampling & control. https://honeybeehealthcoalition.org/wp-content/ uploads/2018/06/HBHC-Guide_Varroa_Interactive_7thEdition_June2018.pdf.

Strange, J. P. and Sheppard, W. S. 2001. Optimum timing of miticide applications for control of Varroa destructor (Acari: Varroidae) in Apis mellifera (Hymenoptera: Apidae) in Washington State, USA. Journal of Economic Entomology 94: 1324-1331.

養蜂技術指導手引書 V

養蜂における衛生管理 ダニ防除技術

「再改訂版」

令和2年11月初版発行 令和3年11月第2版発行 令和4年11月第3版発行 令和5年11月第4版発行

発行所

一般社団法人 日本養蜂協会

〒104-0033 東京都中央区新川2丁目6-16 馬事畜産会館6階

著者

木村 澄

プラチナバイオ株式会社 (国立研究開発法人農業・食品産業技術総合研究機構) 畜産研究部門 高度飼養技術研究領域 /

松山 茂

筑波大学生命環境系

中村 純

玉川大学農学部先端食農学科

浅田研一

公益社団法人福岡県畜産協会

荻原麻理

国立研究開発法人農業·食品産業技術総合研究機構 畜産研究部門 高度飼養技術研究領域

協力

日本農薬株式会社 アリスタヘルスアンドニュートリションサイエンス株式会社

本書のスキャン、デジタル化等の無断複製は著作権法上での例外を除き禁じられています。 【非売品】

【お問い合わせ】

--_{般社団法人} **日本養蜂協会**

〒104-0033 東京都中央区新川二丁目6-16 馬事畜産会館6階

TEL 03-3297-5645 FAX 03-3297-5646

https://www.beekeeping.or.jp